Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Erika Cruz Keeps Whirlpool’s Machines Spinning



Few devices are as crucial to people’s everyday lives as their household appliances. Electrical engineer Erika Cruz says it’s her mission to make sure they operate smoothly.

Cruz helps design washing machines and dryers for Whirlpool, the multinational appliance manufacturer.

Erika Cruz


Employer:

Whirlpool

Occupation:

Associate electrical engineer

Education:

Bachelor’s degree in electronics engineering, Industrial University of Santander, in Bucaramanga, Colombia

As a member of the electromechanical components team at Whirlpool’s research and engineering center in Benton Harbor, Mich., she oversees the development of timers, lid locks, humidity sensors, and other components.

More engineering goes into the machines than is obvious. Because the appliances are sold around the world, she says, they must comply with different technical and safety standards and environmental conditions. And reliability is key.

“If the washer’s door lock gets stuck and your clothes are inside, your whole day is going to be a mess,” she says.

While appliances can be taken for granted, Cruz loves that her work contributes in its own small way to the quality of life of so many.

“I love knowing that every time I’m working on a new design, the lives of millions of people will be improved by using it,” she says.

From Industrial Design to Electrical Engineering

Cruz grew up in Bucaramanga, Colombia, where her father worked as an electrical engineer, designing control systems for poultry processing plants. Her childhood home was full of electronics, and Cruz says her father taught her about technology. He paid her to organize his resistors, for example, and asked her to create short videos for work presentations about items he was designing. He also took Cruz and her sister along with him to the processing plants.

“We would go and see how the big machines worked,” she says. “It was very impressive because of their complexity and impact. That’s how I got interested in technology.”

In 2010, Cruz enrolled in Colombia’s Industrial University of Santander, in Bucaramanga, to study industrial design. But she quickly became disenchanted with the course’s focus on designing objects like fancy tables and ergonomic chairs.

“I wanted to design huge machines like my father did,” she says.

A teacher suggested that she study mechanical engineering instead. But her father was concerned about discrimination she might face in that career.

“He told me it would be difficult to get a job in the industry because mechanical engineers work with heavy machinery, and they saw women as being fragile,” Cruz says.

Her father thought electrical engineers would be more receptive to women, so she switched fields.

“I am very glad I ended up studying electronics because you can apply it to so many different fields,” Cruz says. She received a bachelor’s degree in electronics engineering in 2019.

The Road to America

While at university, Cruz signed up for a program that allowed Colombian students to work summer jobs in the United States. She held a variety of summer positions in Galveston, Texas, from 2017 to 2019, including cashier, housekeeper, and hostess.

She met her future husband in 2018, an American working at the same amusement park as she did. When she returned the following summer, they started dating, and that September they married. Since she had already received her degree, he was eager for her to move to the states permanently, but she made the difficult decision to return to Colombia.

“With the language barrier and my lack of engineering experience, I knew if I stayed in the United States, I would have to continue working jobs like housekeeping forever,” she says. “So I told my husband he had to wait for me because I was going back home to get some engineering experience.”

“I love knowing that every time I’m working on a new design, the lives of millions of people will be improved by using it.”

Cruz applied for engineering jobs in neighboring Brazil, which had more opportunities than Colombia did. In 2021, she joined Whirlpool as an electrical engineer at its R&D site in Joinville, Brazil. There, she introduced into mass production sensors and actuators provided by new suppliers.

Meanwhile, she applied for a U.S. Green Card, which would allow her to work and live permanently in the country. She received it six months after starting her job. Cruz asked her manager about transferring to one of Whirlpool’s U.S. facilities, not expecting to have any luck. Her manager set up a phone call with the manager of the components team at the company’s Benton Harbor site to discuss the request. Cruz didn’t realize that the call was actually a job interview. She was offered a position there as an electrical engineer and moved to Michigan later that year.

Designing Appliances Is Complex

Designing a new washing machine or dryer is a complex process, Cruz says. First, feedback from customers about desirable features is used to develop a high-level design. Then the product design work is divided among small teams of engineers, each responsible for a given subsystem, including hardware, software, materials, and components.

Part of Cruz’s job is to test components from different suppliers to make sure they meet safety, reliability, and performance requirements. She also writes the documentation that explains to other engineers about the components’ function and design.

Cruz then helps select the groups of components to be used in a particular application—combining, say, three temperature sensors with two humidity sensors in an optimized location to create a system that finds the best time to stop the dryer.

Building a Supportive Environment

Cruz loves her job, but her father’s fears about her entering a male-dominated field weren’t unfounded. Discrimination was worse in Colombia, she says, where she regularly experienced inappropriate comments and behavior from university classmates and teachers.

Even in the United States, she points out, “As a female engineer, you have to actually show you are able to do your job, because occasionally at the beginning of a project men are not convinced.”

In both Brazil and Michigan, Cruz says, she’s been fortunate to often end up on teams with a majority of women, who created a supportive environment. That support was particularly important when she had her first child and struggled to balance work and home life.

“It’s easier to talk to women about these struggles,” she says. “They know how it feels because they have been through it too.”

Update Your Knowledge

Working in the consumer electronics industry is rewarding, Cruz says. She loves going into a store or visiting someone’s home and seeing the machines that she’s helped build in action.

A degree in electronics engineering is a must for the field, Cruz says, but she’s also a big advocate of developing project management and critical thinking skills. She is a certified associate in project management, granted by the Project Management Institute, and has been trained in using tools that facilitate critical thinking. She says the project management program taught her how to solve problems in a more systematic way and helped her stand out in interviews.

It’s also important to constantly update your knowledge, Cruz says, “because electronics is a discipline that doesn’t stand still. Keep learning. Electronics is a science that is constantly growing.”

The Engineer Who Pins Down the Particles at the LHC



The Large Hadron Collider has transformed our understanding of physics since it began operating in 2008, enabling researchers to investigate the fundamental building blocks of the universe. Some 100 meters below the border between France and Switzerland, particles accelerate along the LHC’s 27-kilometer circumference, nearly reaching the speed of light before smashing together.

The LHC is often described as the biggest machine ever built. And while the physicists who carry out experiments at the facility tend to garner most of the attention, it takes hundreds of engineers and technicians to keep the LHC running. One such engineer is Irene Degl’Innocenti, who works in digital electronics at the European Organization for Nuclear Research (CERN), which operates the LHC. As a member of CERN’s beam instrumentation group, Degl’Innocenti creates custom electronics that measure the position of the particle beams as they travel.

Irene Degl’Innocenti


Employer:

CERN

Occupation:

Digital electronics engineer

Education:

Bachelor’s and master’s degrees in electrical engineering; Ph.D. in electrical, electronics, and communications engineering, University of Pisa, in Italy

“It’s a huge machine that does very challenging things, so the amount of expertise needed is vast,” Degl’Innocenti says.

The electronics she works on make up only a tiny part of the overall operation, something Degl’Innocenti is keenly aware of when she descends into the LHC’s cavernous tunnels to install or test her equipment. But she gets great satisfaction from working on such an important endeavor.

“You’re part of something that is very huge,” she says. “You feel part of this big community trying to understand what is actually going on in the universe, and that is very fascinating.”

Opportunities to Work in High-energy Physics

Growing up in Italy, Degl’Innocenti wanted to be a novelist. Throughout high school she leaned toward the humanities, but she had a natural affinity for math, thanks in part to her mother, who is a science teacher.

“I’m a very analytical person, and that has always been part of my mind-set, but I just didn’t find math charming when I was little,” Degl’Innocenti says. “It took a while to realize the opportunities it could open up.”

She started exploring electronics around age 17 because it seemed like the most direct way to translate her logical, mathematical way of thinking into a career. In 2011, she enrolled in the University of Pisa, in Italy, earning a bachelor’s degree in electrical engineering in 2014 and staying on to earn a master’s degree in the same subject.

At the time, Degl’Innocenti had no idea there were opportunities for engineers to work in high-energy physics. But she learned that a fellow student had attended a summer internship at Fermilab, the participle physics and accelerator laboratory in Batavia, Ill. So she applied for and won an internship there in 2015. Since Fermilab and CERN closely collaborate, she was able to help design a data-processing board for LHC’s Compact Muon Solenoid experiment.

Next she looked for an internship closer to home and discovered CERN’s technical student program, which allows students to work on a project over the course of a year. Working in the beam-instrumentation group, Degl’Innocenti designed a digital-acquisition system that became the basis for her master’s thesis.

Measuring the Position of Particle Beams

After receiving her master’s in 2017, Degl’Innocenti went on to pursue a Ph.D., also at the University of Pisa. She conducted her research at CERN’s beam-position section, which builds equipment to measure the position of particle beams within CERN’s accelerator complex. The LHC has roughly 1,000 monitors spaced around the accelerator ring. Each monitor typically consists of two pairs of sensors positioned on opposite sides of the accelerator pipe, and it is possible to measure the beam’s horizontal and vertical positions by comparing the strength of the signal at each sensor.

The underlying concept is simple, Degl’Innocenti says, but these measurements must be precise. Bunches of particles pass through the monitors every 25 nanoseconds, and their position must be tracked to within 50 micrometers.

“We start developing a system years in advance, and then it has to work for a couple of decades.”

Most of the signal processing is normally done in analog, but during her Ph.D., she focused on shifting as much of this work as possible to the digital domain because analog circuits are finicky, she says. They need to be precisely calibrated, and their accuracy tends to drift over time or when temperatures fluctuate.

“It’s complex to maintain,” she says. “It becomes particularly tricky when you have 1,000 monitors, and they are located in an accelerator 100 meters underground.”

Information is lost when analog is converted to digital, however, so Degl’Innocenti analyzed the performance of the latest analog-to-digital converters (ADCs) and investigated their effect on position measurements.

Designing Beam-Monitor Electronics

After completing her Ph.D. in electrical, electronics, and communications engineering in 2021, Degl’Innocenti joined CERN as a senior postdoctoral fellow. Two years later, she became a full-time employee there, applying the results of her research to developing new hardware. She’s currently designing a new beam-position monitor for the High-Luminosity upgrade to the LHC, expected to be completed in 2028. This new system will likely use a system-on-chip to house most of the electronics, including several ADCs and a field-programmable gate array (FPGA) that Degl’Innocenti will program to run a new digital signal-processing algorithm.

She’s part of a team of just 15 who handle design, implementation, and ongoing maintenance of CERN’s beam-position monitors. So she works closely with the engineers who design sensors and software for those instruments and the physicists who operate the accelerator and set the instruments’ requirements.

“We start developing a system years in advance, and then it has to work for a couple of decades,” Degl’Innocenti says.

Opportunities in High-Energy Physics

High-energy physics has a variety of interesting opportunities for engineers, Degl’Innocenti says, including high-precision electronics, vacuum systems, and cryogenics.

“The machines are very large and very complex, but we are looking at very small things,” she says. “There are a lot of big numbers involved both at the large scale and also when it comes to precision on the small scale.”

FPGA design skills are in high demand at all kinds of research facilities, and embedded systems are also becoming more important, Degl’Innocenti says. The key is keeping an open mind about where to apply your engineering knowledge, she says. She never thought there would be opportunities for people with her skill set at CERN.

“Always check what technologies are being used,” she advises. “Don’t limit yourself by assuming that working somewhere would not be possible.”

This article appears in the August 2024 print issue as “Irene Degl’Innocenti.”

A Bosch Engineer Speeds Hybrid Race Cars to the Finish Line



When it comes to motorsports, the need for speed isn’t only on the racetrack. Engineers who support race teams also need to work at a breakneck pace to fix problems, and that’s something Aakhilesh Singhania relishes.

Singhania is a senior applications engineer at Bosch Engineering, in Novi, Mich. He develops and supports electronic control systems for hybrid race cars, which feature combustion engines and battery-powered electric motors.

Aakhilesh Singhania


Employer:

Bosch Engineering

Occupation:

Senior applications engineer

Education:

Bachelor’s degree in mechanical engineering, Manipal Institute of Technology, India; master’s degree in automotive engineering, University of Michigan, Ann Arbor

His vehicles compete in two iconic endurance races: the Rolex 24 at Daytona in Daytona Beach, Fla., and the 24 Hours of Le Mans in France. He splits his time between refining the underlying technology and providing trackside support on competition day. Given the relentless pace of the racing calendar and the intense time pressure when cars are on the track, the job is high octane. But Singhania says he wouldn’t have it any other way.

“I’ve done jobs where the work gets repetitive and mundane,” he says. “Here, I’m constantly challenged. Every second counts, and you have to be very quick at making decisions.”

An Early Interest in Motorsports

Growing up in Kolkata, India, Singhania picked up a fascination with automobiles from his father, a car enthusiast.

In 2010, when Singhania began his mechanical engineering studies at India’s Manipal Institute of Technology, he got involved in the Formula Student program, an international engineering competition that challenges teams of university students to design, build, and drive a small race car. The cars typically weigh less than 250 kilograms and can have an engine no larger than 710 cubic centimeters.

“It really hooked me,” he says. “I devoted a lot of my spare time to the program, and the experience really motivated me to dive further into motorsports.”

One incident in particular shaped Singhania’s career trajectory. In 2013, he was leading Manipal’s Formula Student team and was one of the drivers for a competition in Germany. When he tried to start the vehicle, smoke poured out of the battery, and the team had to pull out of the race.

“I asked myself what I could have done differently,” he says. “It was my lack of knowledge of the electrical system of the car that was the problem.” So, he decided to get more experience and education.

Learning About Automotive Electronics

After graduating in 2014, Singhania began working on engine development for Indian car manufacturer Tata Motors in Pune. In 2016, determined to fill the gaps in his knowledge about automotive electronics, he left India to begin a master’s degree program in automotive engineering at the University of Michigan in Ann Arbor.

He took courses in battery management, hybrid controls, and control-system theory, parlaying this background into an internship with Bosch in 2017. After graduation in 2018, he joined Bosch full-time as a calibration engineer, developing technology for hybrid and electric vehicles.

Transitioning into motorsports required perseverance, Singhania says. He became friendly with the Bosch team that worked on electronics for race cars. Then in 2020 he got his big break.

That year, the U.S.-based International Motor Sports Association and the France-based Automobile Club de l’Ouest created standardized rules to allow the same hybrid race cars to compete in both the Sportscar Championship in North America, host of the famous Daytona race, and the global World Endurance Championship, host of Le Mans.

The Bosch motorsports team began preparing a proposal to provide the standardized hybrid system. Singhania, whose job already included creating simulations of how vehicles could be electrified, volunteered to help.

“I’m constantly challenged. Every second counts, and you have to be very quick at making decisions.”

The competition organizers selected Bosch as lead developer of the hybrid system that would be provided to all teams. Bosch engineers would also be required to test the hardware they supplied to each team to ensure none had an advantage.

“The performance of all our parts in all the cars has to fall within 1 percent of each other,” Singhania says.

After Bosch won the contract, Singhania officially became a motorsports calibration engineer, responsible for tweaking the software to fit the idiosyncrasies of each vehicle.

In 2022 he stepped up to his current role: developing software for the hybrid control unit (HCU), which is essentially the brains of the vehicle. The HCU helps coordinate all of the different subsystems such as the engine, battery, and electric motor and is responsible for balancing power requirements among these different components to maximize performance and lifetime.

Bosch’s engineers also designed software known as an equity model, which runs on the HCU. It is based on historical data collected from the operation of the hybrid systems’ various components, and controls their performance in real time to ensure all the teams’ hardware operates at the same level.

In addition, Singhania creates simulations of the race cars, which are used to better understand how the different components interact and how altering their configuration would affect performance.

Troubleshooting Problems on Race Day

Technology development is only part of Singhania’s job. On race days, he works as a support engineer, helping troubleshoot problems with the hybrid system as they crop up. Singhania and his colleagues monitor each team’s hardware using computers on Bosch’s race-day trailer, a mobile nerve center hardwired to the organizers’ control center on the race track.

“We are continuously looking at all the telemetry data coming from the hybrid system and analyzing [the system’s] health and performance,” he says.

If the Bosch engineers spot an issue or a team notifies them of a problem, they rush to the pit stall to retrieve a USB stick from the vehicle, which contains detailed data to help them diagnose and fix the issue.

After the race, the Bosch engineers analyze the telemetry data to identify ways to boost the standardized hybrid system’s performance for all the teams. In motorsports, where the difference between winning and losing can come down to fractions of a second, that kind of continual improvement is crucial.

Customers “put lots of money into this program, and they are there to win,” Singhania says.

Breaking Into Motorsports Engineering

Many engineers dream about working in the fast-paced and exciting world of motorsports, but it’s not easy breaking in. The biggest lesson Singhania learned is that if you don’t ask, you don’t get invited.

“Keep pursuing them because nobody’s going to come to you with an offer,” he says. “You have to keep talking to people and be ready when the opportunity presents itself.”

Demonstrating that you have experience contributing to challenging projects is a big help. Many of the engineers Bosch hires have been involved in Formula Student or similar automotive-engineering programs, such as the EcoCAR EV Challenge, says Singhania.

The job isn’t for everyone, though, he says. It’s demanding and requires a lot of travel and working on weekends during race season. But if you thrive under pressure and have a knack for problem solving, there are few more exciting careers.

This article appears in the July 2024 print issue as “Aakhilesh Singhania.”

❌
❌