Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

A Non-Engineer’s Journey to IEEE Leadership



Sharlene Brown often accompanied her husband, IEEE Senior Member Damith Wickramanayake, to organization meetings. He has held leadership positions in the IEEE Jamaica Section, in IEEE Region 3, and on the IEEE Member and Geographic Activities board. Both are from Jamaica.

She either waited outside the conference room or helped with tasks such as serving refreshments. Even though her husband encouraged her to sit in on the meetings, she says, she felt uncomfortable doing so because she wasn’t an engineer. Brown is an accountant and human resources professional. Her husband is a computer science professor at the University of Technology, Jamaica, in Kingston. He is currently Region 3’s education activities coordinator and a member of the section’s education and outreach committee for the IEEE Educational Activities Board.

Sharlene Brown


Employer

Maritime Authority of Jamaica, in Kingston

Title

Assistant accountant

Member grade

Senior member

Alma mater

University of Technology, Jamaica, in Kingston; Tsinghua University, in Beijing

After earning her master’s degree in public administration in 2017, Brown says, she felt she finally was qualified to join IEEE, so she applied. Membership is open to individuals who, by education or experience, are competent in different fields including management. She was approved the same year.

“When I joined IEEE, I would spend long hours at night reading various operations manuals and policies because I wanted to know what I was getting into,” she says. “I was always learning. That’s how I got to know a lot of things about the organization.”

Brown is now a senior member and an active IEEE volunteer. She founded the Jamaica Section’s Women in Engineering group; established a student branch; sits on several high-level IEEE boards; and ran several successful recruitment campaigns to increase the number of senior members in Jamaica and throughout Region 3.

Brown was also a member of the subcommittee of the global Women in Engineering committee; she served as membership coordinator and ran several successful senior member campaigns, elevating women on the committee and across IEEE.

Brown also was integral in the promotion and follow-up activities for the One IEEE event held in January at the University of Technology, Jamaica. The first-of-its-kind workshop connected more than 200 participants to each other and to the organization by showcasing Jamaica’s active engineering community. The Jamaica Section has 135 IEEE members.

From factory worker to accountant

Brown grew up in Bog Walk, a rural town in the parish of St. Catherine. Because she had low grades in high school, the only job she was able to get after graduating was as a temporary factory worker at the nearby Nestlé plant. She worked as many shifts as she could to help support her family.

“I didn’t mind working,” she says, “because I was making my mark. Anything I do, I am going to be excellent at, whether it’s cleaning the floor or doing office work.” But she had bigger plans than being a factory worker, she says.

A friend told her about a temporary job overseeing exams at the Jamaican Institute of Management, now part of the University of Technology. Brown worked both jobs for a time until the school hired her full time to do administrative work in its accounting department.

One of the perks of working there was free tuition for employees, and Brown took full advantage. She studied information management and computer applications, Jamaican securities, fraud detection, forensic auditing, and supervisory management, earning an associate degree in business administration in 2007. The school hired her in 2002 as an accountant, and she worked there for five years.

In 2007 she joined the Office of the Prime Minister, in Kingston, initially as an officer handling payments to suppliers. Her hard work and positive attitude got her noticed by other managers, she says. After a month she was tapped by the budget department to become a commitment control officer, responsible for allocating and overseeing funding for four of the country’s ministries.

“What I realized through my volunteer work in IEEE is that you’re never alone. There is always somebody to guide you.”

As a young accountant, she didn’t have hands-on experience with budgeting, but she was a quick learner who produced quality work, she says. She learned the budgeting process by helping her colleagues when her work slowed down and during her lunch breaks.

That knowledge gave her the skills she needed to land her current job as an assistant accountant with the budget and management accounts group in the Maritime Authority of Jamaica accounts department, a position she has held since 2013.

While she was working for the Office of the Prime Minister, Brown continued to further her education. She took night courses at the University of Technology and, in 2012, earned a bachelor’s degree in business administration. She majored in accounting and minored in human resources management.

She secured a full scholarship in 2016 from the Chinese government to study public administration in Beijing at Tsinghua University, earning a master’s degree with distinction in 2017.

Brown says she is now ready to shift to a human resources career. Even though she has been supervising people for more than 17 years, though, she is having a hard time finding an HR position, she says.

Still willing to take on challenges, she is increasing her experience by volunteering with an HR consulting firm in Jamaica. To get more formal training, she is currently working on an HR certification from the Society for Human Resource Management.

class setting with children sitting at desks wearing masks and shields on their desks Sharlene Brown arranged for the purchase of 350 desk shields for Jamaican schools during the COVID-19 pandemic.Sharlene Brown

Building a vibrant community

After graduating from Tsinghua University, Brown began volunteering for the IEEE Jamaica Section and Region 3.

In 2019 she founded the section’s IEEE Women in Engineering affinity group, which she chaired for three years. She advocated for more women in leadership roles and has run successful campaigns to increase the number of female senior members locally, regionally, and globally across IEEE. She herself was elevated to senior member in 2019.

Brown also got the WIE group more involved in helping the community. One project she is particularly proud of is the purchase of 350 desk shields for Jamaican schools so students could more safely attend classes and examination sessions in person during the COVID-19 pandemic.

Brown was inspired to undertake the project when a student explained on a local news program that his family couldn’t afford Internet for their home, so he was unable to attend classes remotely.

“Every time I watched the video clip, I would cry,” she says. “This young man might be the next engineer, the country’s next minister, or the next professional.

“I’m so happy we were able to get funding from Region 3 and a local organization to provide those shields.”

She established an IEEE student branch at the Caribbean Maritime University, in Kingston. The branch had almost 40 students at the time of formation.

Brown is working to form student branches at other Jamaican universities, and she is attempting to establish an IEEE Power & Energy Society chapter in the section.

She is a member of several IEEE committees including the Election Oversight and Tellers. She serves as chair for the region’s Professional Activities Committee.

“What I realized through my volunteer work in IEEE is that you’re never alone,” she says. “There is always somebody to help guide you. If they don’t know something, they will point you to the person who does.

“Also, you’re allowed to make mistakes,” she says. “In some organizations, if you make a mistake, you might lose your job or have to pay for your error. But IEEE is your professional home, where you learn, grow, and make mistakes.”

On some of the IEEE committees where she serves, she is the only woman of color, but she says she has not faced any discrimination—only respect.

“I feel comfortable and appreciated by the people and the communities I work with,” she says. “That motivates me to continue to do well and to touch lives positively. That’s what makes me so active in serving in IEEE: You’re appreciated and rewarded for your hard work.”

Try IEEE’s New Virtual Testbed for 5G and 6G Tech



Telecom engineers and researchers face several challenges when it comes to testing their 5G and 6G prototypes. One is finding a testbed where they can run experiments with their new hardware and software.

The experimentation platforms, which resemble real-world conditions, can be pricey. Some have a time limit. Others may be used only by specific companies or for testing certain technologies.

The new IEEE 5G/6G Innovation Testbed has eliminated many of those barriers. Built by IEEE, the platform is for those who want to try out their 5G enhancements, run trials of future 6G functions, or test updates for converged networks. Users may test and retest as many times as they want at no additional cost.

Telecom operators can use the new virtual testbed, as can application developers, researchers, educators, and vendors from any industry.

“The IEEE 5G/6G Innovation Testbed creates an environment where industry can break new ground and work together to develop the next generation of technology innovations,” says Anwer Al-Dulaimi, cochair of the IEEE 5G/6G Innovation Testbed working group. Al-Dulaimi, an IEEE senior member, is a senior strategy manager of connectivity and Industry 4.0 for Veltris, in Toronto.

The testbed was launched this year with support from AT&T, Exfo, Eurecom, Veltris, VMWare, and Tech Mahindra.

The subscription-based testbed is available only to organizations. Customers receive their own private, secure session of the testing platform in the cloud along with the ability to add new users.

A variety of architectures and experiments

The platform eliminates the need for customers to travel to a location and connect to physical hardware, Al-Dulaimi says. That’s because its digital hub is based in the cloud, allowing companies, research facilities, and organizations to access it. The testbed allows customers to upload their own software components for testing.

“IEEE 5G/6G Innovation Testbed provides a unique platform for the service providers, and various vertical industries—including defense, homeland security, agriculture, and automotive—to experiment various use cases that can take advantage of advanced 5G technologies like ultra low latency, machine-to-machine type communications and massive broadband to help solve their pain points,” says IEEE Fellow Ashutosh Dutta, who is a cochair of the working group. Dutta works as chief 5G strategist at the Johns Hopkins University Applied Physics Laboratory, in Laurel, Md. He also heads the university’s Doctor of Engineering program.

“The IEEE 5G/6G Innovation Testbed creates an environment where industry can break new ground and work together to develop the next generation of technology innovations.”

The collaborative, secure, cloud-based platform also can emulate a 5G end-to-end network within the 3rd Generation Partnership Program (3GPP), which defines cellular communications standards.

“Companies can use the platform for testing, but they can also use the environment as a virtual hands-on showcase of new products, services, and network functions,” Dutta says.

In addition to the cloud-based end-to-end environment, the testbed supports other architectures including multiaccess edge computing for reduced latency, physical layer testing via 5G access points and phones installed at IEEE, and Open RAN (radio access network) environments where wireless radio functionality is disaggregated to allow for better flexibility in mixing hardware and software components.

A variety of experiments can be conducted, Al-Dulaimi says, including:

  • Voice and video call emulation.
  • Authentication and encryption impact evaluation across different 5G platforms.
  • Network slicing.
  • Denial-of-service attacks and interoperability and overload incidents.
  • Verifying the functionality, compatibility, and interoperability of products.
  • Assessing conformity of networks, components, and products.

The testbed group plans to release a new graphical user interface soon, as well as a test orchestration tool that contains hundreds of plug-and-play test cases to help customers quickly determine if their prototypes are working as intended across a variety of standards and scenarios. In addition to basic “sanity testing,” it includes tools to measure a proposed product’s real-time performance.

The proofs of concept—lessons learned from experiments—will help advance existing standards and create new ones, Dutta says, and they will expedite the deployment of 5G and 6G technologies.

The IEEE 5G/6G testbed is an asset that can be used by the academics, researchers, and R&D labs, he says, to help “close the gap between theory and practice. Students across the world can take advantage of this testbed to get hands-on experience as part of their course curriculum.”

Partnership with major telecom companies

The IEEE 5G/6G Innovation Testbed recently joined the Acceleration of Compatibility and Commercialization for Open RAN Deployments project. A public-private consortium, ACCORD includes AT&T, Verizon, Virginia Tech and the University of Texas at Dallas. The group is funded by the U.S. Department of Commerce’s National Telecommunications and Information Administration, whose programs and policymaking efforts focus on expanding broadband Internet access and adoption throughout the country.

“The 3GPP-compliant end-to-end 5G network is built with a suite of open-source modules, allowing companies to customize the network architecture and tailor their testbed environment according to their needs,” Al-Dulaimi says.

The testbed was made possible with a grant from the IEEE New Initiatives Committee, which funds potential IEEE services, products, and other creations that could significantly benefit members, the public, customers, or the technical community.

To get a free trial of the testbed, complete this form.

Watch this short demonstration of how the IEEE 5G/6G Innovation Testbed works. youtube

High Schooler Brings IEEE Mobile Disaster-Relief Tech to Campus



Unlike most people who encounter the IEEE-USA MOVE (Mobile Outreach VEhicle) emergency relief truck, Ananya Yanduru wasn’t a survivor of a natural disaster who needed to charge her cellphone or access the Internet. Instead, the 16-year-old got a guided tour of the truck on the grounds of her high school. She had requested MOVE visit Canyon Crest Academy, in San Diego, so she and her classmates could learn about the technology it houses.

The vehicle is equipped with satellite Internet access and IP phone service. MOVE can charge up to 100 cellphones simultaneously. It also has a mobile television for tracking storms, as well as radios for communications. A generator and three solar panels on the roof power the technology.

When it’s not deployed to help in disaster recovery, the vehicle stops at venues so its team can provide guided tours, educating people about ways technology helps during disasters.

Yanduru spotted the truck in June 2023 when it was parked at the San Diego Convention Center. She was there to accompany her father, an IEEE senior member, to a conference.

“I saw that the truck had traveled across the United States to help with hurricanes, be there for disaster relief, and work with the American Red Cross,” she says. “I thought that was a big deal.” MOVE’s volunteers often coordinate their disaster-relief efforts with the Red Cross.

Tours were over for the day, but that didn’t stop her. She was so determined to explore the vehicle that as soon as she got home she went to the MOVE website and requested a visit to her school. It showed up a few weeks later.

Yanduru was most interested in its communications system. She was impressed that the vehicle had its own Wi-Fi network, she says.

“I really liked how the IEEE-USA MOVE truck is able to establish such a strong communication system in a disaster area,” she says. “The radio engineering communication part really clicked with me.”

The vehicle was a big hit at her school, Yanduru says. More than 70 students and teachers toured it. Some of the students brought their family and friends.

Qualcomm’s devices inspired an interest in engineering

Yanduru is no stranger to engineering or technology. She comes from a family of engineers and is a member of her school’s radio engineering, coding, and 3D printing clubs.

Her father, electrical engineer Naveen Yanduru, is vice president and general manager of Renesas Electronics, in San Diego. Her mother, electrical engineer Arunasree Parsi, has worked as a computer-aided design engineer for Qualcomm and other semiconductor companies. Parsi is now president and CEO of Kaleidochip, also in San Diego.

“I really liked how the IEEE-USA MOVE truck is able to establish such a strong communication system in a disaster area.”

Yanduru says her mother sparked her passion for technology. When the girl was a youngster, the two visited the Qualcomm Museum, which displays the company’s modems, chips, tracking systems, and other products.

“I got interested in engineering from looking at those devices and seeing how engineering could be applied to so many different aspects of the world and used in so many fields,” she says.

Her parents support her interest in engineering because “it’s something that we can talk about,” she says. “I always feel open to discussing technology with them because they have so much knowledge in the field.”

outdoor view of a truck with text on it with a line of students waiting next to it Students and teachers from San Diego’s Canyon Crest Academy line up to tour the IEEE-USA MOVE truck during its stop at the high school.Ananya Yanduru

Participating in ham radio, 3D printing, and coding clubs

It’s no surprise Yanduru was interested in the MOVE’s communication system. She is a cofounder and copresident of her school’s radio engineering club, which has 10 members. It teaches students about topics they need to know to pass the amateur radio licensing test.

Yanduru is a licensed amateur radio operator. Her call sign is K06BAM.

“Getting a license sounds cool to a lot of high school students,” she says, “so as the founders, we thought the club would get more interest if we showed them an easy way to get their ham radio license.”

Now that most members have a license, they decided to participate in other activities. They first chose NASA’s Radio JOVE. The citizen science project provides kits for building a simple radio telescope to conduct scientific analysis of planets, the Milky Way, and Earth-based radio emissions. The findings are then shared with radio observatories via the Internet.

The club’s students plan to build their telescope during summer break, Yanduru says, adding that in the next school year they’ll conduct experiments about energy coming from Jupiter, then will send their results to NASA for analysis.

Yanduru also helped establish the school’s 3D printing club. She teaches club members how to print. The six members also help teachers repair the printers.

Another hobby of hers is writing code. She is secretary of the academy’s Girls Who Code club, which has about 20 members, not including the classmates they teach. The program aims to increase the number of women in the tech field by teaching coding.

She is sharing the knowledge she gains from the club as a volunteer teaching assistant for the League of Amazing Programmers. The San Diego–based nonprofit after-school program trains students in grades 5 to 12 on Java and Python.

“I really like being part of all the clubs,” she says, “because they use different aspects of engineering. For 3D, you really get to see the creative and the physical aspects. Radio is obviously more abstract. And coding is fun.”

Yanduru is still a few years away from attending college, but she says she plans to pursue an engineering degree. Choosing which field is a dilemma, she says.

“There’s a lot of things in electrical engineering and computer engineering that I find interesting,” she says. “I’ll definitely be studying something in one of those fields.”

IEEE Offers New Transportation Platform With Advanced Analytics Tools



To help find ways to solve transportation issues such as poorly maintained roads, traffic jams, and the high rate of accidents, researchers need access to the most current datasets on a variety of topics. But tracking down information about roadway conditions, congestion, and other statistics across multiple websites can be time-consuming. Plus, the data isn’t always accurate.

The new National Transportation Data & Analytics Solution (NTDAS), developed with the help of IEEE, makes it easier to retrieve, visualize, and analyze data in one place. NTDAS combines advanced research tools with access to high-quality transportation datasets from the U.S. Federal Highway Administration’s National Highway System and the entire Traffic Message Channel network, which distributes information on more than 1 million road segments. Anonymous data on millions of cars and trucks is generated from vehicle probes, which are vehicles equipped with GPS or global navigation satellite systems that gather traffic data on location, speed, and direction. This information helps transportation planners improve traffic flow, make transportation networks more efficient, and plan budgets.

The platform is updated monthly and contains archival data back to 2017.

“The difference between NTDAS and other competitors is that our data comes from a trusted source that means the most: the U.S. Federal Highway Administration,” says Lavanya Sayam, senior manager of data analytics alliances and programs for IEEE Global Products and Marketing. “The data has been authenticated and validated. The ability to download this massive dataset provides an unparalleled ease to data scientists and machine-learning engineers to explore and innovate.”

IEEE is diversifying its line of products beyond its traditional fields of electrical engineering, Sayam adds. “We are not just focused on electrical or computer science,” she says. “IEEE is so diverse, and this state-of-the-art platform reflects that.”

Robust analytical tools

NTDAS was built in partnership with INRIX, a transportation analytics solutions provider, and the University of Maryland’s Center for Advanced Transportation Technology Laboratory, a leader in transportation science research. INRIX provided the data, while UMD built the analytics tools. The platform leverages the National Performance Management Research Data Set, a highly granular data source from the Federal Highway Administration.

The suite of tools allows users to do tasks such as creating a personal dashboard to monitor traffic conditions on specific roads, downloading raw data for analysis, building animated maps of road conditions, and measuring the flow of traffic. There are tutorials available on the platform on how to use each tool, and templates for creating reports, documents, and pamphlets.

“The difference between National Transportation Data & Analytics Solutions and other competitors is that our data comes from a trusted source that means the most: the U.S. Federal Highway Administration.” —Lavanya Sayam

“This is the first time this type of platform is being offered by IEEE to the global academic institutional audience,” she says. “IEEE is always looking for new ways to serve the engineering community.”

A subscription-based service, NTDAS has multidisciplinary relevance, Sayam says. The use cases it includes serve researchers and educators who need a robust platform that has all the data that helps them conduct analytics in one place, she says. For university instructors, it’s an innovative way to teach the courses, and for students, it’s a unique way to apply what they’ve learned with real-world data and uses.

The platform goes beyond just those working in transportation, Sayam notes. Others who might find NTDAS useful include those who study traffic as it relates to sustainability, the environment, civil engineering, public policy, business, and logistics, she adds.

50 ways to minimize the impact of traffic

NTDAS also includes more than 50 use cases created by IEEE experts to demonstrate how the data could be analyzed. The examples identify ways to protect the environment, better serve disadvantaged communities, support alternative transportation, and improve the safety of citizens. “Data from NTDAS can be easily extrapolated to non-U.S. geographies, making it highly relevant to global researchers,” according to Sayam. This is explained in specific use cases too.

The cases cover topics such as the impact of traffic on bird populations, air-quality issues in underserved communities, and optimal areas to install electric vehicle charging stations.

Two experts covered various strategies for how to use the data to analyze the impact of transportation and infrastructure on the environment in this on-demand webinar held in May.

Thomas Brennan, a professor of civil engineering at the College of New Jersey, discussed how using NTDAS data could aid in better planning of evacuation routes during wildfires, such as determining the location of first responders and traffic congestion in the area, including seasonal traffic. This and other data could lead to evacuating residents faster, new evacuation road signage, and better communication warning systems, he said.

“Traffic systems are super complex and very difficult to understand and model,” said presenter Jane MacFarlane, director of the Smart Cities and Sustainable Mobility Center at the University of California’s Institute of Transportation Studies, in Berkeley. “Now that we have datasets like these, that’s giving us a huge leg up in trying to use them for predictive modeling and also helping us with simulating things so that we can gain a better understanding.”

Watch this short demonstration about the National Transportation Data & Analytics Solutions platform.

“Transportation is a basic fabric of society,” Sayam says. “Understanding its impact is an imperative for better living. True to IEEE’s mission of advancing technology for humanity, NTDAS, with its interdisciplinary relevance, helps us understand the impact of transportation across several dimensions.”

❌
❌