Reading view

There are new articles available, click to refresh the page.

Meet the radio-obsessed civilian shaping Ukraine’s drone defense

Serhii “Flash” Beskrestnov hates going to the front line. The risks terrify him. “I’m really not happy to do it at all,” he says. But to perform his particular self-appointed role in the Russia-Ukraine war, he believes it’s critical to exchange the relative safety of his suburban home north of the capital for places where the prospect of death is much more immediate. “From Kyiv,” he says, “nobody sees the real situation.”

So about once a month, he drives hundreds of kilometers east in a homemade mobile intelligence center: a black VW van in which stacks of radio hardware connect to an array of antennas on the roof that stand like porcupine quills when in use. Two small devices on the dash monitor for nearby drones. Over several days at a time, Flash studies the skies for Russian radio transmissions and tries to learn about the problems facing troops in the fields and in the trenches.

He is, at least in an unofficial capacity, a spy. But unlike other spies, Flash does not keep his work secret. In fact, he shares the results of these missions with more than 127,000 followers—including many soldiers and government officials—on several public social media channels. Earlier this year, for instance, he described how he had recorded five different Russian reconnaissance drones in a single night—one of which was flying directly above his van.

“Brothers from the Armed Forces of Ukraine, I am trying to inspire you,” he posted on his Facebook page in February, encouraging Ukrainian soldiers to learn how to recognize enemy drone signals as he does. “You will spread your wings, you will understand over time how to understand distance and, at some point, you will save the lives of dozens of your colleagues.”

Drones have come to define the brutal conflict that has now dragged on for more than two and a half years. And most rely on radio communications—a technology that Flash has obsessed over since childhood. So while Flash is now a civilian, the former officer has still taken it upon himself to inform his country’s defense in all matters related to radio.

As well as the frontline information he shares on his public channels, he runs a “support service” for almost 2,000 military communications specialists on Signal and writes guides for building anti-drone equipment on a tight budget. “He’s a celebrity,” one special forces officer recently shouted to me over the thump of music in a Kyiv techno club. He’s “like a ray of sun,” an aviation specialist in Ukraine’s army told me. Flash tells me that he gets 500 messages every day asking for help.

Despite this reputation among rank-and-file service members—and maybe because of it—Flash has also become a source of some controversy among the upper echelons of Ukraine’s military, he tells me. The Armed Forces of Ukraine declined multiple requests for comment, but Flash and his colleagues claim that some high-ranking officials perceive him as a security threat, worrying that he shares too much information and doesn’t do enough to secure sensitive intel. As a result, some refuse to support or engage with him. Others, Flash says, pretend he doesn’t exist. Either way, he believes they are simply insecure about the value of their own contributions—“because everybody knows that Serhii Flash is not sitting in Kyiv like a colonel in the Ministry of Defense,” he tells me in the abrasive fashion that I’ve come to learn is typical of his character. 

But above all else, hours of conversations with numerous people involved in Ukraine’s defense, including frontline signalmen and volunteers, have made clear that even if Flash is a complicated figure, he’s undoubtedly an influential one. His work has become greatly important to those fighting on the ground, and he recently received formal recognition from the military for his contributions to the fight, with two medals of commendation—one from the commander of Ukraine’s ground forces, the other from the Ministry of Defense. 

With a handheld directional antenna and a spectrum analyzer, Flash can scan for hostile signals.
EMRE ÇAYLAK

Despite a small number of semi-autonomous machines with a reduced reliance on radio communications, the drones that saturate the skies above the battlefield will continue to largely depend on this technology for the foreseeable future. And in this race for survival—as each side constantly tries to best the other, only to start all over again when the other inevitably catches up—Ukrainian soldiers need to develop creative solutions, and fast. As Ukraine’s wartime radio guru, Flash may just be one of their best hopes for doing that. 

“I know nothing about his background,” says “Igrok,” who works with drones in Ukraine’s 110th Mechanized Brigade and whom we are identifying by his call sign, as is standard military practice. “But I do know that most engineers and all pilots know nothing about radios and antennas. His job is definitely one of the most powerful forces keeping Ukraine’s aerial defense in good condition.”

And given the mounting evidence that both militaries and militant groups in other parts of the world are now adopting drone tactics developed in Ukraine, it’s not only his country’s fate that Flash may help to determine—but also the ways that armies wage war for years to come.

A prescient hobby

Before I can even start asking questions during our meeting in May, Flash is rummaging around in the back of the Flash-mobile, pulling out bits of gear for his own version of show-and-tell: a drone monitor with a fin-shaped antenna; a walkie-talkie labeled with a sticker from Russia’s state security service, the FSB; an approximately 1.5-meter-long foldable antenna that he says probably came from a US-made Abrams tank.

Flash has parked on a small wooded road beside the Kyiv Sea, an enormous water reservoir north of the capital. He’s wearing a khaki sweat-wicking polo shirt, combat trousers, and combat boots, with a Glock 19 pistol strapped to his hip. (“I am a threat to the enemy,” he tells me, explaining that he feels he has to watch his back.) As we talk, he moves from one side to the other, as if the electromagnetic waves that he’s studied since childhood have somehow begun to control the motion of his body.

Now 49, Flash grew up in a suburb of Kyiv in the ’80s. His father, who was a colonel in the Soviet army, recalls bringing home broken radio equipment for his preteen son to tinker with. Flash showed talent from the start. He attended an after-school radio club, and his father fixed an antenna to the roof of their apartment for him. Later, Flash began communicating with people in countries beyond the Iron Curtain. “It was like an open door to the big world for me,” he says.

Flash recalls with amusement a time when a letter from the KGB arrived at his family home, giving his father the fright of his life. His father didn’t know that his son had sent a message on a prohibited radio frequency, and someone had noticed. Following the letter, when Flash reported to the service’s office in downtown Kyiv, his teenage appearance confounded them. Boy, what are you doing here? Flash recalls an embarrassed official saying. 

Ukraine had been a hub of innovation as part of the Soviet Union. But by the time Flash graduated from military communications college in 1997, Ukraine had been independent for six years, and corruption and a lack of investment had stripped away the armed forces’ former grandeur. Flash spent just a year working in a military radio factory before he joined a private communications company developing Ukraine’s first mobile network, where he worked with technologies far more advanced than what he had used in the military. The  project was called “Flash.” 

A decade and a half later, Flash had risen through the ranks of the industry to become head of department at the progenitor to the telecommunications company Vodafone Ukraine. But boredom prompted him to leave and become an entrepreneur. His many projects included a successful e-commerce site for construction services and a popular video game called Isotopium: Chernobyl, which he and a friend based on the “really neat concept,” according to a PC Gamer review, of allowing players to control real robots (fitted with radios, of course) around a physical arena. Released in 2019, it also received positive reviews from Reuters and BBC News.

But within just a few years, an unexpected attack would hurl his country into chaos—and upend Flash’s life. 

“I am here to help you with technical issues,” Flash remembers writing to his Signal group when he first started offering advice. “Ask me anything and I will try to find the answer for you.”
EMRE ÇAYLAK

By early 2022, rumors were growing of a potential attack from Russia. Though he was still working on Isotopium, Flash began to organize a radio network across the northern suburbs of Kyiv in preparation. Near his home, he set up a repeater about 65 meters above ground level that could receive and then rebroadcast transmissions from all the radios in its network across a 200-square-kilometer area. Another radio amateur programmed and distributed handheld radios.

When Russian forces did invade, on February 24, they took both fiber-optic and mobile networks offline, as Flash had anticipated. The radio network became the only means of instant communications for civilians and, critically, volunteers mobilizing to fight in the region, who used it to share information about Russian troop movements. Flash fed this intel to several professional Ukrainian army units, including a unit of special reconnaissance forces. He later received an award from the head of the district’s military administration for his part in Kyiv’s defense. The head of the district council referred to Flash as “one of the most worthy people” in the region.

Yet it was another of Flash’s projects that would earn him renown across Ukraine’s military.

Despite being more than 100 years old, radio technology is still critical in almost all aspects of modern warfare, from secure communications to satellite-guided missiles. But the decline of Ukraine’s military, coupled with the movement of many of the country’s young techies into lucrative careers in the growing software industry, created a vacuum of expertise. Flash leaped in to fill it.

Within roughly a month of Russia’s incursion, Flash had created a private group called “Military Signalmen” on the encrypted messaging platform Signal, and invited civilian radio experts from his personal network to join alongside military communications specialists. “I am here to help you with technical issues,” he remembers writing to the group. “Ask me anything and I will try to find the answer for you.”

The kinds of questions that Flash and his civilian colleagues answered in the first months were often basic. Group members wanted to know how to update the firmware on their devices, reset their radios’ passwords, or set up the internal communications networks for large vehicles. Many of the people drafted as communications specialists in the Ukrainian military had little relevant experience; Flash claims that even professional soldiers lacked appropriate training and has referred to large parts of Ukraine’s military communications courses as “either nonsense or junk.” (The Korolov Zhytomyr Military Institute, where many communications specialists train, declined a request for comment.)

After Russia’s invasion of Ukraine, Flash transformed his VW van into a mobile radio intelligence center.
EMRE ÇAYLAK

He demonstrates handheld spectrum analyzers with custom Ukrainian firmware.

News of the Signal group spread by word of mouth, and it soon became a kind of 24-hour support service that communications specialists in every sector of Ukraine’s frontline force subscribed to. “Any military engineer can ask anything and receive the answer within a couple of minutes,” Flash says. “It’s a nice way to teach people very quickly.” 

As the war progressed into its second year, Military Signalmen became, to an extent, self-sustaining. Its members had learned enough to answer one another’s questions themselves. And this is where several members tell me that Flash has contributed the most value. “The most important thing is that he brought together all these communications specialists in one team,” says Oleksandr “Moto,” a technician at an EU mission in Kyiv and an expert in Motorola equipment, who has advised members of the group. (He asked to not be identified by his surname, due to security concerns.) “It became very efficient.”

Today, Flash and his partners continue to answer occasional questions that require more advanced knowledge. But over the past year, as the group demanded less of his time, Flash has begun to focus on a rapidly proliferating weapon for which his experience had prepared him almost perfectly: the drone.  

A race without end

The Joker-10 drone, one of Russia’s latest additions to its arsenal, is equipped with a hibernation mechanism, Flash warned his Facebook followers in March. This feature allows the operator to fly it to a hidden location, leave it there undetected, and then awaken it when it’s time to attack. “It is impossible to detect the drone using radio-electronic means,” Flash wrote. “If you twist and turn it in your hands—it will explode.” 

This is just one example of the frequent developments in drone engineering that Ukrainian and Russian troops are adapting to every day. 

Larger strike drones similar to the US-made Reaper have been familiar in other recent conflicts, but sophisticated air defenses have rendered them less dominant in this war. Ukraine and Russia are developing and deploying vast numbers of other types of drones—including the now-notorious “FPV,” or first-person view, drone that pilots operate by wearing goggles that stream video of its perspective. These drones, which can carry payloads large enough to destroy tanks, are cheap (costing as little as $400), easy to produce, and difficult to shoot down. They use direct radio communications to transmit video feeds, receive commands, and navigate.

""
A Ukrainian soldier prepares an FPV drone equipped with dummy ammunition for a simulated flight operation.
MARCO CORDONE/SOPA IMAGES/SIPA USA VIA AP IMAGES

But their reliance on radio technology is a major vulnerability, because enemies can disrupt the signals that the drones emit—making them far less effective, if not inoperable. This form of electronic warfare—which most often involves emitting a more powerful signal at the same frequency as the operator’s—is called “jamming.”

Jamming, though, is an imperfect solution. Like drones, jammers themselves emit radio signals that can enable enemies to locate them. There are also effective countermeasures to bypass jammers. For example, a drone operator can use a tactic called “frequency hopping,” rapidly jumping between different frequencies to avoid a jammer’s signal. But even this method can be disrupted by algorithms that calculate the hopping patterns.

For this reason, jamming is a frequent focus of Flash’s work. In a January post on his Telegram channel, for instance, which people viewed 48,000 times, Flash explained how jammers used by some Ukrainian tanks were actually disrupting their own communications. “The cause of the problems is not direct interference with the reception range of the radio station, but very powerful signals from several [electronic warfare] antennae,” he wrote, suggesting that other tank crews experiencing the same problem might try spreading their antennas across the body of the tank. 

It is all part of an existential race in which Russia and Ukraine are constantly hunting for new methods of drone operation, drone jamming, and counter-jamming—and there’s no end in sight. In March, for example, Flash says, a frontline contact sent him photos of a Russian drone with what looks like a 10-kilometer-long spool of fiber-optic cable attached to its rear—one particularly novel method to bypass Ukrainian jammers. “It’s really crazy,” Flash says. “It looks really strange, but Russia showed us that this was possible.”

Flash’s trips to the front line make it easier for him to track developments like this. Not only does he monitor Russian drone activity from his souped-up VW, but he can study the problems that soldiers face in situ and nurture relationships with people who may later send him useful intel—or even enemy equipment they’ve seized. “The main problem is that our generals are located in Kyiv,” Flash says. “They send some messages to the military but do not understand how these military people are fighting on the front.”

Besides the advice he provides to Ukrainian troops, Flash also publishes online his own manuals for building and operating equipment that can offer protection from drones. Building their own tools can be soldiers’ best option, since Western military technology is typically expensive and domestic production is insufficient. Flash recommends buying most of the parts on AliExpress, the Chinese e-commerce platform, to reduce costs.

While all his activity suggests a close or at least cooperative relationship between Flash and Ukraine’s military, he sometimes finds himself on the outside looking in. In a post on Telegram in May, as well as during one of our meetings, Flash shared one of his greatest disappointments of the war: the military’s refusal of his proposal to create a database of all the radio frequencies used by Ukrainian forces. But when I mentioned this to an employee of a major electronic warfare company, who requested anonymity to speak about the sensitive subject, he suggested that the only reason Flash still complains about this is that the military hasn’t told him it already exists. (Given its sensitivity, MIT Technology Review was unable to independently confirm the existence of this database.) 

Flash believes that generals in Kyiv “do not understand how these military people are fighting on the front.” So even though he doesn’t like the risks they involve, he takes trips to the frontline about once a month.
EMRE ÇAYLAK

This anecdote is emblematic of Flash’s frustration with a military complex that may not always want his involvement. Ukraine’s armed forces, he has told me on several occasions, make no attempt to collaborate with him in an official manner. He claims not to receive any financial support, either. “I’m trying to help,” he says. “But nobody wants to help me.”

Both Flash and Yurii Pylypenko, another radio enthusiast who helps Flash manage his Telegram channel, say military officials have accused Flash of sharing too much information about Ukraine’s operations. Flash claims to verify every member of his closed Signal groups, which he says only discuss “technical issues” in any case. But he also admits the system is not perfect and that Russians could have gained access in the past. Several of the soldiers I interviewed for this story also claimed to have entered the groups without Flash’s verification process. 

It’s ultimately difficult to determine if some senior staff in the military hold Flash at arm’s length because of his regular, often strident criticism—or whether Flash’s criticism is the result of being held at arm’s length. But it seems unlikely either side’s grievances will subside soon; Pylypenko claims that senior officers have even tried to blackmail him over his involvement in Flash’s work. “They blame my help,” he wrote to me over Telegram, “because they think Serhii is a Russian agent reposting Russian propaganda.” 

Is the world prepared?

Flash’s greatest concern now is the prospect of Russia overwhelming Ukrainian forces with the cheap FPV drones. When they first started deploying FPVs, both sides were almost exclusively targeting expensive equipment. But as production has increased, they’re now using them to target individual soldiers, too. Because of Russia’s production superiority, this poses a serious danger—both physical and psychological—to Ukrainian soldiers. “Our army will be sitting under the ground because everybody who goes above ground will be killed,” Flash says. Some reports suggest that the prevalence of FPVs is already making it difficult for soldiers to expose themselves at all on the battlefield.

To combat this threat, Flash has a grand yet straightforward idea. He wants Ukraine to build a border “wall” of jamming systems that cover a broad range of the radio spectrum all along the front line. Russia has already done this itself with expensive vehicle-based systems, but these present easy targets for Ukrainian drones, which have destroyed several of them. Flash’s idea is to use a similar strategy, albeit with smaller, cheaper systems that are easier to replace. He claims, however, that military officials have shown no interest.

Although Flash is unwilling to divulge more details about this strategy (and who exactly he pitched it to), he believes that such a wall could provide a more sustainable means of protecting Ukrainian troops. Nevertheless, it’s difficult to say how long such a defense might last. Both sides are now in the process of developing artificial-intelligence programs that allow drones to lock on to targets while still outside enemy jamming range, rendering them jammer-proof when they come within it. Flash admits he is concerned—and he doesn’t appear to have a solution.

Flash admits he is worried about Russia overwhelming Ukrainian forces with the cheap FPV drones: “Our army will be sitting under the ground because everybody who goes above ground will be killed.”
EMRE ÇAYLAK

He’s not alone. The world is entirely unprepared for this new type of warfare, says Yaroslav Kalinin, a former Ukrainian intelligence officer and the CEO of Infozahyst, a manufacturer of equipment for electronic warfare. Kalinin recounts talking at an electronic-warfare-focused conference in Washington, DC, last December where representatives from some Western defense companies weren’t able to recognize the basic radio signals emitted by different types of drones. “Governments don’t count [drones] as a threat,” he says. “I need to run through the streets like a prophet—the end is near!”

Nevertheless, Ukraine has become, in essence, a laboratory for a new era of drone warfare—and, many argue, a new era of warfare entirely. Ukraine’s and Russia’s soldiers are its technicians. And Flash, who sometimes sleeps curled up in the back of his van while on the road, is one of its most passionate researchers. “Military developers from all over the world come to us for experience and advice,” he says. Only time will tell whether their contributions will be enough to see Ukraine through to the other side of this war. 

Charlie Metcalfe is a British journalist. He writes for magazines and newspapers, including Wired, the Guardian, and MIT Technology Review.

Video Friday: HAND to Take on Robotic Hands



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

The National Science Foundation Human AugmentatioN via Dexterity Engineering Research Center (HAND ERC) was announced in August 2024. Funded for up to 10 years and $52 million, the HAND ERC is led by Northwestern University, with core members Texas A&M, Florida A&M, Carnegie Mellon, and MIT, and support from Wisconsin-Madison, Syracuse, and an innovation ecosystem consisting of companies, national labs, and civic and advocacy organizations. HAND will develop versatile, easy-to-use dexterous robot end effectors (hands).

[ HAND ]

The Environmental Robotics Lab at ETH Zurich, in partnership with Wilderness International (and some help from DJI and Audi), is using drones to sample DNA from the tops of trees in the Peruvian rainforest. Somehow, the treetops are where 60 to 90 percent of biodiversity is found, and these drones can help researchers determine what the heck is going on up there.

[ ERL ]

Thanks, Steffen!

1X introduces NEO Beta, “the pre-production build of our home humanoid.”

“Our priority is safety,” said Bernt Børnich, CEO at 1X. “Safety is the cornerstone that allows us to confidently introduce NEO Beta into homes, where it will gather essential feedback and demonstrate its capabilities in real-world settings. This year, we are deploying a limited number of NEO units in selected homes for research and development purposes. Doing so means we are taking another step toward achieving our mission.”

[ 1X ]

We love MangDang’s fun and affordable approach to robotics with Mini Pupper. The next generation of the little legged robot has just launched on Kickstarter, featuring new and updated robots that make it easy to explore embodied AI.

The Kickstarter is already fully funded after just a day or two, but there are still plenty of robots up for grabs.

[ Kickstarter ]

Quadrupeds in space can use their legs to reorient themselves. Or, if you throw one off a roof, it can learn to land on its feet.

To be presented at CoRL 2024.

[ ARL ]

HEBI Robotics, which apparently was once headquartered inside a Pittsburgh public bus, has imbued a table with actuators and a mind of its own.

[ HEBI Robotics ]

Carcinization is a concept in evolutionary biology where a crustacean that isn’t a crab eventually becomes a crab. So why not do the same thing with robots? Crab robots solve all problems!

[ KAIST ]

Waymo is smart, but also humans are really, really dumb sometimes.

[ Waymo ]

The Robotics Department of the University of Michigan created an interactive community art project. The group that led the creation believed that while roboticists typically take on critical and impactful problems in transportation, medicine, mobility, logistics, and manufacturing, there are many opportunities to find play and amusement. The final piece is a grid of art boxes, produced by different members of our robotics community, which offer an eight-inch-square view into their own work with robotics.

[ Michigan Robotics ]

I appreciate that UBTECH’s humanoid is doing an actual job, but why would you use a humanoid for this?

[ UBTECH ]

I’m sure most actuators go through some form of life-cycle testing. But if you really want to test an electric motor, put it into a BattleBot and see what happens.

[ Hardcore Robotics ]

Yes, but have you tried fighting a BattleBot?

[ AgileX ]

In this video, we present collaboration aerial grasping and transportation using multiple quadrotors with cable-suspended payloads. Grasping using a suspended gripper requires accurate tracking of the electromagnet to ensure a successful grasp while switching between different slack and taut modes. In this work, we grasp the payload using a hybrid control approach that switches between a quadrotor position control and a payload position control based on cable slackness. Finally, we use two quadrotors with suspended electromagnet systems to collaboratively grasp and pick up a larger payload for transportation.

[ Hybrid Robotics ]

I had not realized that the floretizing of broccoli was so violent.

[ Oxipital ]

While the RoboCup was held over a month ago, we still wanted to make a small summary of our results, the most memorable moments, and of course an homage to everyone who is involved with the B-Human team: the team members, the sponsors, and the fans at home. Thank you so much for making B-Human the team it is!

[ B-Human ]

Will This Flying Camera Finally Take Off?



Ten years. Two countries. Multiple redesigns. Some US $80 million invested. And, finally, Zero Zero Robotics has a product it says is ready for consumers, not just robotics hobbyists—the HoverAir X1. The company has sold several hundred thousand flying cameras since the HoverAir X1 started shipping last year. It hasn’t gotten the millions of units into consumer hands—or flying above them—that its founders would like to see, but it’s a start.

“It’s been like a 10-year-long Ph.D. project,” says Zero Zero founder and CEO Meng Qiu Wang. “The thesis topic hasn’t changed. In 2014 I looked at my cell phone and thought that if I could throw away the parts I don’t need—like the screen—and add some sensors, I could build a tiny robot.”

I first spoke to Wang in early 2016, when Zero Zero came out of stealth with its version of a flying camera—at $600. Wang had been working on the project for two years. He started the project in Silicon Valley, where he and cofounder Tony Zhang were finishing up Ph.D.s in computer science at Stanford University. Then the two decamped for China, where development costs are far less.

Flying cameras were a hot topic at the time; startup Lily Robotics demonstrated a $500 flying camera in mid-2015 (and was later charged with fraud for faking its demo video), and in March of 2016 drone-maker DJI introduced a drone with autonomous flying and tracking capabilities that turned it into much the same type of flying camera that Wang envisioned, albeit at the high price of $1400.

Wang aimed to make his flying camera cheaper and easier to use than these competitors by relying on image processing for navigation—no altimeter, no GPS. In this approach, which has changed little since the first design, one camera looks at the ground and algorithms follow the camera’s motion to navigate. Another camera looks out ahead, using facial and body recognition to track a single subject.

The current version, at $349, does what Wang had envisioned, which is, he told me, “to turn the camera into a cameraman.” But, he points out, the hardware and software, and particularly the user interface, changed a lot. The size and weight have been cut in half; it’s just 125 grams. This version uses a different and more powerful chipset, and the controls are on board; while you can select modes from a smart phone app, you don’t have to.

I can verify that it is cute (about the size of a paperback book), lightweight, and extremely easy to use. I’ve never flown a standard drone without help or crashing but had no problem sending the HoverAir up to follow me down the street and then land on my hand.

It isn’t perfect. It can’t fly over water—the movement of the water confuses the algorithms that judge speed through video images of the ground. And it only tracks people; though many would like it to track their pets, Wang says animals behave erratically, diving into bushes or other places the camera can’t follow. Since the autonomous navigation algorithms rely on the person being filmed to avoid objects and simply follows that path, such dives tend to cause the drone to crash.

Since we last spoke eight years ago, Wang has been through the highs and lows of the startup rollercoaster, turning to contract engineering for a while to keep his company alive. He’s become philosophical about much of the experience.

Here’s what he had to say.

We last spoke in 2016. Tell me how you’ve changed.

Meng Qiu Wang: When I got out of Stanford in 2014 and started the company with Tony [Zhang], I was eager and hungry and hasty and I thought I was ready. But retrospectively, I wasn’t ready to start a company. I was chasing fame and money, and excitement.

Now I’m 42, I have a daughter—everything seems more meaningful now. I’m not a Buddhist, but I have a lot of Zen in my philosophy now.

I was trying so hard to flip the page to see the next chapter of my life, but now I realize, there is no next chapter, flipping the page itself is life.

You were moving really fast in 2016 and 2017. What happened during that time?

Wang: After coming out of stealth, we ramped up from 60 to 140 people planning to take this product into mass production. We got a crazy amount of media attention—covered by 2,200 media outlets. We went to CES, and it seemed like we collected every trophy there was there.

And then Apple came to us, inviting us to retail at all the Apple stores. This was a big deal; I think we were the first third party robotic product to do live demos in Apple stores. We produced about 50,000 units, bringing in about $15 million in revenue in six months.

Then a giant company made us a generous offer and we took it. But it didn’t work out. It was a certainly lesson learned for us. I can’t say more about that, but at this point if I walk down the street and I see a box of pizza, I would not try to open it; there really is no free lunch.

a black caged drone with fans and a black box in the middle This early version of the Hover flying camera generated a lot of initial excitement, but never fully took off.Zero Zero Robotics

How did you survive after that deal fell apart?

Wang: We went from 150 to about 50 people and turned to contract engineering. We worked with toy drone companies, with some industrial product companies. We built computer vision systems for larger drones. We did almost four years of contract work.

But you kept working on flying cameras and launched a Kickstarter campaign in 2018. What happened to that product?

Wang: It didn’t go well. The technology wasn’t really there. We filled some orders and refunded ones that we couldn’t fill because we couldn’t get the remote controller to work.

We really didn’t have enough resources to create a new product for a new product category, a flying camera, to educate the market.

So we decided to build a more conventional drone—our V-Coptr, a V-shaped bi-copter with only two propellers—to compete against DJI. We didn’t know how hard it would be. We worked on it for four years. Key engineers left out of total dismay, they lost faith, they lost hope.

We came so close to going bankrupt so many times—at least six times in 10 years I thought I wasn’t going to be able to make payroll for the next month, but each time I got super lucky with something random happening. I never missed paying one dime—not because of my abilities, just because of luck.

We still have a relatively healthy chunk of the team, though. And this summer my first ever software engineer is coming back. The people are the biggest wealth that we’ve collected over the years. The people who are still with us are not here for money or for success. We just realized along the way that we enjoy working with each other on impossible problems.

When we talked in 2016, you envisioned the flying camera as the first in a long line of personal robotics products. Is that still your goal?

Wang: In terms of short-term strategy, we are focusing 100 percent on the flying camera. I think about other things, but I’m not going to say I have an AI hardware company, though we do use AI. After 10 years I’ve given up on talking about that.

Do you still think there’s a big market for a flying camera?

Wang: I think flying cameras have the potential to become the second home robot [the first being the robotic vacuum] that can enter tens of millions of homes.

How the US and its allies can rebuild economic security

A country’s economic security—its ability to generate both national security and economic prosperity—is grounded in it having significant technological capabilities that outpace those of its adversaries and complement those of its allies. Though this is a principle well known throughout history, the move over the last few decades toward globalization and offshoring of technologically advanced industrial capacity has made ensuring a nation state’s security and economic prosperity increasingly problematic. A broad span of technologies ranging from automation and secure communications to energy storage and vaccine design are the basis for wider economic prosperity—and high priorities for governments seeking to maintain national security. However, the necessary capabilities do not spring up overnight. They rely upon long decades of development, years of accumulated knowledge, and robust supply chains.

For the US and, especially, its allies in NATO, a particular problem has emerged: a “missing middle” in technology investment. Insufficient capital is allocated toward the maturation of breakthroughs in critical technologies to ensure that they can be deployed at scale. Investment is allocated either toward the rapid deployment of existing technologies or to scientific ideas that are decades away from delivering practical capability or significant economic impact (for example, quantum computers). But investment in scaling manufacturing technologies, learning while doing, and maturing of emerging technologies to contribute to a next-generation industrial base, is too often absent. Without this middle-ground commitment, the United States and its partners lack the production know-how that will be crucial for tomorrow’s batteries, the next generation of advanced computing, alternative solar photovoltaic cells, and active pharmaceutical ingredients.

While this once mattered only for economic prosperity, it is now a concern for national security too—especially given that China has built strong supply chains and other domestic capabilities that confer both economic security and significant geopolitical leverage.

Consider drone technology. Military doctrine has shifted toward battlefield technology that relies upon armies of small, relatively cheap products enabled by sophisticated software—from drones above the battlefield to autonomous boats to CubeSats in space.

Drones have played a central role in the war in Ukraine. First-person viewer (FPV) drones—those controlled by a pilot on the ground via a video stream—are often strapped with explosives to act as precision kamikaze munitions and have been essential to Ukraine’s frontline defenses. While many foundational technologies for FPV drones were pioneered in the West, China now dominates the manufacturing of drone components and systems, which ultimately enables the country to have a significant influence on the outcome of the war.

When the history of the war in Ukraine is written, it will be taught as the first true “drone war.” But it should also be understood as an industrial wake-up call: a time when the role of a drone’s component parts was laid bare and the supply chains that support this technology—the knowledge, production operations, and manufacturing processes—were found wanting. Heroic stories will be told of Ukrainian ingenuity in building drones with Chinese parts in basements and on kitchen tables, and we will hear of the country’s attempt to rebuild supply chains dominated by China while in the midst of an existential fight for survival. But in the background, we will also need to understand the ways in which other nations, especially China, controlled the war through long-term economic policies focused on capturing industrial capacity that the US and its allies failed to support through to maturity.

Disassemble one of the FPV drones found across the battlefields of Ukraine and you will find about seven critical subsystems: power, propulsion, flight control, navigation and sensors (which gather location data and other information to support flight), compute (the processing and memory capacity needed to analyze the vast array of information and then support operations), communications (to connect the drone to the ground), and—supporting it all—the airframe.

We have created a bill of materials listing the components necessary to build an FPV drone and the common suppliers for those parts.

China’s manufacturing dominance has resulted in a domestic workforce with the experience to achieve process innovations and product improvements that have no equal in the West.  And it has come with the sophisticated supply chains that support a wide range of today’s technological capabilities and serve as the foundations for the next generation. None of that was inevitable. For example, most drone electronics are integrated on printed circuit boards (PCBs), a technology that was developed in the UK and US. However, first-mover advantage was not converted into long-term economic or national security outcomes, and both countries have lost the PCB supply chain to China.

Propulsion is another case in point. The brushless DC motors used to convert electrical energy from batteries into mechanical energy to rotate drone propellers were invented in the US and Germany. The sintered permanent neodymium (NdFeB) magnets used in these motors were invented in Japan and the US. Today, to our knowledge, all brushless DC motors for drones are made in China. Similarly, China dominates all steps in the processing and manufacture of NdFeB magnets, accounting for 92% of global NdFeB magnet and magnet alloy markets.

The missing middle of technology investment—insufficient funding for commercial production—is evident in each and every one of these failures, but the loss of expertise is an added dimension. For example, lithium polymer (LiPo) batteries are at the heart of every FPV drone. LiPo uses a solid or gel polymer electrolyte and achieves higher specific energy (energy per unit of weight)—a feature that is crucial for lightweight drones. Today, you would be hard-pressed to find a LiPo battery that was not manufactured in China. The experienced workforce behind these companies has contributed to learning curves that have led to a 97% drop in the cost of lithium-ion batteries and a simultaneous 300%-plus increase in battery energy density over the past three decades.

China’s dominance in LiPo batteries for drones reflects its overall dominance in Li-ion manufacturing. China controls approximately 75% of global lithium-ion capacity—the anode, cathode, electrolyte, and separator subcomponents as well as the assembly into a single unit. It dominates the manufacture of each of these subcomponents, producing over 85% of anodes and over 70% of cathodes, electrolytes, and separators. China also controls the extraction and refinement of minerals needed to make these subcomponents.

Again, this dominance was not inevitable. Most of the critical breakthroughs needed to invent and commercialize Li-ion batteries were made by scientists in North America and Japan. But in comparison to the US and Europe (at least until very recently), China has taken a proactive stance to coordinate, support, and co-invest with strategic industries to commercialize emerging technologies. China’s Ministry of Industry and Information Technology has been at pains to support these domestic industries.

The case of Li-ion batteries is not an isolated one. The shift to Chinese dominance in the underlying electronics for FPV drones coincides with the period beginning in 2000, when Shenzhen started to emerge as a global hub for low-cost electronics. This trend was amplified by US corporations from Apple, for which low-cost production in China has been essential, to General Electric, which also sought low-cost approaches to maintain the competitive edge of its products. The global nature of supply chains was seen as a strength for US companies, whose comparative advantage lay in the design and integration of consumer products (such as smartphones) with little or no relevance for national security. Only a small handful of “exquisite systems” essential for military purposes were carefully developed within the US. And even those have relied upon global supply chains.

While the absence of the high-tech industrial capacity needed for economic security is easy to label, it is not simple to address. Doing so requires several interrelated elements, among them designing and incentivizing appropriate capital investments, creating and matching demand for a talented technology workforce, building robust industrial infrastructure, ensuring visibility into supply chains, and providing favorable financial and regulatory environments for on- and friend-shoring of production. This is a project that cannot be done by the public or the private sector alone. Nor is the US likely to accomplish it absent carefully crafted shared partnerships with allies and partners across both the Atlantic and the Pacific.

The opportunity to support today’s drones may have passed, but we do have the chance to build a strong industrial base to support tomorrow’s most critical technologies—not simply the eye-catching finished assemblies of autonomous vehicles, satellites, or robots but also their essential components. This will require attention to our manufacturing capabilities, our supply chains, and the materials that are the essential inputs. Alongside a shift in emphasis to our own domestic industrial base must come a willingness to plan and partner more effectively with allies and partners.

If we do so, we will transform decades of US and allied support for foundational science and technology into tomorrow’s industrial base vital for economic prosperity and national security. But to truly take advantage of this opportunity, we need to value and support our shared, long-term economic security. And this means rewarding patient investment in projects that take a decade or more, incentivizing high-capital industrial activity, and maintaining a determined focus on education and workforce development—all within a flexible regulatory framework.

Edlyn V. Levine is CEO and co-founder of a stealth-mode technology start up and an affiliate at MIT Sloan School of Management and the Department of Physics at Harvard University. Levine was co-founder and CSO of America’s Frontier Fund, and formerly Chief Technologist for the MITRE Corporation.

Fiona Murray is the William Porter (1967) Professor of Entrepreneurship at the MIT School of Management where she works at the intersection of critical technologies, entrepreneurship, and geopolitics. She is the Vice Chair of the NATO Innovation Fund—a multi-sovereign venture fund for defense, security and resilience, and served for a decade on the UK Prime Minister’s Council on Science and Technology.

Sea Drones in the Russia-Ukraine War Inspire New Tactics



Against all odds, Ukraine is still standing almost two and a half years after Russia’s massive 2022 invasion. Of course, hundreds of billions of dollars in Western support as well as Russian errors have helped immensely, but it would be a mistake to overlook Ukraine’s creative use of new technologies, particularly drones. While uncrewed aerial vehicles have grabbed most of the attention, it is naval drones that could be the key to bringing Russian president Vladimir Putin to the negotiating table.

These naval-drone operations in the Black Sea against Russian warships and other targets have been so successful that they are prompting, in London, Paris, Washington, and elsewhere, fundamental reevaluations of how drones will affect future naval operations. In August, 2023, for example, the Pentagon launched the billion-dollar Replicator initiative to field air and naval drones (also called sea drones) on a massive scale. It’s widely believed that such drones could be used to help counter a Chinese invasion of Taiwan.

And yet Ukraine’s naval drones initiative grew out of necessity, not grand strategy. Early in the war, Russia’s Black Sea fleet launched cruise missiles into Ukraine and blockaded Odesa, effectively shutting down Ukraine’s exports of grain, metals, and manufactured goods. The missile strikes terrorized Ukrainian citizens and shut down the power grid, but Russia’s blockade was arguably more consequential, devastating Ukraine’s economy and creating food shortages from North Africa to the Middle East.

With its navy seized or sunk during the war’s opening days, Ukraine had few options to regain access to the sea. So Kyiv’s troops got creative. Lukashevich Ivan Volodymyrovych, a brigadier general in the Security Service of Ukraine, the country’s counterintelligence agency, proposed building a series of fast, uncrewed attack boats. In the summer of 2022, the service, which is known by the acronym SBU, began with a few prototype drones. These quickly led to a pair of naval drones that, when used with commercial satellite imagery, off-the-shelf uncrewed aircraft, and Starlink terminals, gave Ukrainian operators the means to sink or disable a third of Russia’s Black Sea Fleet, including the flagship Moskva and most of the fleet’s cruise-missile-equipped warships.

To protect their remaining vessels, Russian commanders relocated the Black Sea Fleet to Novorossiysk, 300 kilometers east of Crimea. This move sheltered the ships from Ukrainian drones and missiles, but it also put them too far away to threaten Ukrainian shipping or defend the Crimean Peninsula. Kyiv has exploited the opening by restoring trade routes and mounting sustained airborne and naval drone strikes against Russian bases on Crimea and the Kerch Strait Bridge connecting the peninsula with Russia.

How Maguras and Sea Babies Hunt and Attack

The first Ukrainian drone boats were cobbled together with parts from jet skis, motorboats, and off-the-shelf electronics. But within months, manufacturers working for the Ukraine defense ministry and SBU fielded several designs that proved their worth in combat, most notably the Magura V5 and the Sea Baby.

Carrying a 300-kilogram warhead, on par with that of a heavyweight torpedo, the Magura V5 is a hunter-killer antiship drone designed to work in swarms that confuse and overwhelm a ship’s defenses. Equipped with Starlink terminals, which connect to SpaceX’s Starlink satellites, and GPS, a group of about three to five Maguras likely moves autonomously to a location near the potential target. From there, operators can wait until conditions are right and then attack the target from multiple angles using remote control and video feeds from the vehicles.

A man in a black wetsuit and brown bucket hat stands in shallow water next to a gray naval drone. A Ukrainian Magura V5 hunter-killer sea drone was demonstrated at an undisclosed location in Ukraine on 13 April 2024. The domed pod toward the bow, which can rotate from side to side, contains a thermal camera used for guidance and targeting.Valentyn Origrenko/Reuters/Redux

Larger than a Magura, the Sea Baby is a multipurpose vehicle that can carry about 800 kg of explosives, which is close to twice the payload of a Tomahawk cruise missile. A Sea Baby was used in 2023 to inflict substantial damage to the Kerch Strait Bridge. A more recent version carries a rocket launcher that Ukraine troops plan to use against Russian forces along the Dnipro River, which flows through eastern Ukraine and has often formed the frontline in that part of the country. Like a Magura, a Sea Baby is likely remotely controlled using Starlink and GPS. In addition to attack, it’s also equipped for surveillance and logistics.

Russia reduced the threat to its ships by moving them out of the region, but fixed targets like the Kerch Strait Bridge remain vulnerable to Ukrainian sea drones. To try to protect these structures from drone onslaughts, Russian commanders are taking a “kitchen sink” approach, submerging hulks around bridge supports, fielding more guns to shoot at incoming uncrewed vessels, and jamming GPS and Starlink around the Kerch Strait.

Two men wearing balaclavas operate suitcase-style terminals for remote control of sea drones. Ukrainian service members demonstrated the portable, ruggedized consoles used to remotely guide the Magura V5 naval drones in April 2024.Valentyn Origrenko/Reuters/Redux

While the war remains largely stalemated in the country’s north, Ukraine’s naval drones could yet force Russia into negotiations. The Crimean Peninsula was Moscow’s biggest prize from its decade-long assault on Ukraine. If the Kerch Bridge is severed and the Black Sea Fleet pushed back into Russian ports, Putin may need to end the fighting to regain control over Crimea.

Why the U.S. Navy Embraced the Swarm

Ukraine’s small, low-cost sea drones are offering a compelling view of future tactics and capabilities. But recent experiences elsewhere in the world are highlighting the limitations of drones for some crucial tasks. For example, for protecting shipping from piracy or stopping trafficking and illegal fishing, drones are less useful.

Before the Ukraine war, efforts by the U.S. Department of Defense to field surface sea drones focused mostly on large vehicles. In 2015, the Defense Advanced Research Projects Agency started, and the U.S. Navy later continued, a project that built two uncrewed surface vessels, called Sea Hunter and Sea Hawk. These were 130-tonne sea drones capable of roaming the oceans for up to 70 days while carrying payloads of thousands of pounds each. The point was to demonstrate the ability to detect, follow, and destroy submarines. The Navy and the Pentagon’s secretive Strategic Capabilities Office followed with the Ghost Fleet Overlord uncrewed vessel programs, which produced four larger prototypes designed to carry shipping-container-size payloads of missiles, sensors, or electronic countermeasures.

The U.S. Navy’s newly created Uncrewed Surface Vessel Division 1 ( USVDIV-1) completed a deployment across the Pacific Ocean last year with four medium and large sea drones: Sea Hunter and Sea Hawk and two Overlord vessels, Ranger and Mariner. The five-month deployment from Port Hueneme, Calif., took the vessels to Hawaii, Japan, and Australia, where they joined in annual exercises conducted by U.S. and allied navies. The U.S. Navy continues to assess its drone fleet through sea trials lasting from several days to a few months.

A battleship-gray trimaran ship cruises near a wooded shoreline. The Sea Hawk is a U.S. Navy trimaran drone vessel designed to find, pursue, and attack submarines. The 130-tonne ship, photographed here in October of 2023 in Sydney Harbor, was built to operate autonomously on missions of up to 70 days, but it can also accommodate human observers on board. Ensign Pierson Hawkins/U.S. Navy

In contrast with Ukraine’s small sea drones, which are usually remotely controlled and operate outside shipping lanes, the U.S. Navy’s much larger uncrewed vessels have to follow the nautical rules of the road. To navigate autonomously, these big ships rely on robust onboard sensors, processing for computer vision and target-motion analysis, and automation based on predictable forms of artificial intelligence, such as expert- or agent-based algorithms rather than deep learning.

But thanks to the success of the Ukrainian drones, the focus and energy in sea drones are rapidly moving to the smaller end of the scale. The U.S. Navy initially envisioned platforms like Sea Hunter conducting missions in submarine tracking, electronic deception, or clandestine surveillance far out at sea. And large drones will still be needed for such missions. However, with the right tactics and support, a group of small sea drones can conduct similar missions as well as other vital tasks.

For example, though they are constrained in speed, maneuverability, and power generation, solar- or sail-powered drones can stay out for months with little human intervention. The earliest of these are wave gliders like the Liquid Robotics (a Boeing company) SHARC, which has been conducting undersea and surface surveillance for the U.S. Navy for more than a decade. Newer designs like the Saildrone Voyager and Ocius Blue Bottle incorporate motors and additional solar or diesel power to haul payloads such as radars, jammers, decoys, or active sonars. The Ocean Aero Triton takes this model one step further: It can submerge, to conduct clandestine surveillance or a surprise attack, or to avoid detection.

A pair of photographs shows an oblong, gray-and-black sea vessel cruising underwater and also sailing on the surface. The Triton, from Ocean Aero in Gulfport, Miss., is billed as the world’s only autonomous sea drone capable of both cruising underwater and sailing on the surface. Ocean Aero

Ukraine’s success in the Black Sea has also unleashed a flurry of new small antiship attack drones. USVDIV-1 will use the GARC from Maritime Applied Physics Corp. to develop tactics. The Pentagon’s Defense Innovation Unit has also begun purchasing drones for the China-focused Replicator initiative. Among the likely craft being evaluated are fast-attack sea drones from Austin, Texas–based Saronic.

Behind the soaring interest in small and inexpensive sea drones is the changing value proposition for naval drones. As recently as four years ago, military planners were focused on using them to replace crewed ships in “dull, dirty, and dangerous” jobs. But now, the thinking goes, sea drones can provide scale, adaptability, and resilience across each link in the “kill chain” that extends from detecting a target to hitting it with a weapon.

Today, to attack a ship, most navies generally have one preferred sensor (such as a radar system), one launcher, and one missile. But what these planners are now coming to appreciate is that a fleet of crewed surface ships with a collection of a dozen or two naval drones would offer multiple paths to both find that ship and attack it. These craft would also be less vulnerable, because of their dispersion.

Defending Taiwan by Surrounding It With a “Hellscape”

U.S. efforts to protect Taiwan may soon reflect this new value proposition. Many classified and unclassified war games suggest Taiwan and its allies could successfully defend the island—but at costs high enough to potentially dissuade a U.S. president from intervening on Taiwan’s behalf. With U.S. defense budgets capped by law and procurement constrained by rising personnel and maintenance costs, substantially growing or improving today’s U.S. military for this specific purpose is unrealistic. Instead, commanders are looking for creative solutions to slow or stop a Chinese invasion without losing most U.S. forces in the process.

Naval drones look like a good—and maybe the best— solution. The Taiwan Strait is only 160 kilometers (100 miles) wide, and Taiwan’s coastline offers only a few areas where large numbers of troops could come ashore. U.S. naval attack drones positioned on the likely routes could disrupt or possibly even halt a Chinese invasion, much as Ukrainian sea drones have denied Russia access to the western Black Sea and, for that matter, Houthi-controlled drones have sporadically closed off large parts of the Red Sea in the Middle East.

Rather than killer robots seeking out and destroying targets, the drones defending Taiwan would be passively waiting for Chinese forces to illegally enter a protected zone, within which they could be attacked.

The new U.S. Indo-Pacific Command leader, Admiral Sam Paparo, wants to apply this approach to defending Taiwan in a scenario he calls “Hellscape.” In it, U.S. surface and undersea drones would likely be based near Taiwan, perhaps in the Philippines or Japan. When the potential for an invasion rises, the drones would move themselves or be carried by larger uncrewed or crewed ships to the western coast of Taiwan to wait.

Sea drones are well-suited to this role, thanks in part to the evolution of naval technologies and tactics over the past half century. Until World War II, submarines were the most lethal threat to ships. But since the Cold War, long-range subsonic, supersonic, and now hypersonic antiship missiles have commanded navy leaders’ attention. They’ve spent decades devising ways to protect their ships against such antiship missiles.

Much less effort has gone into defending against torpedoes, mines—or sea drones. A dozen or more missiles might be needed to ensure that just one reaches a targeted ship, and even then, the damage may not be catastrophic. But a single surface or undersea drone could easily evade detection and explode at a ship’s waterline to sink it, because in this case, water pressure does most of the work.

The level of autonomy available in most sea drones today is more than enough to attack ships in the Taiwan Strait. Details of U.S. military plans are classified, but a recent Hudson Institute report that I wrote with Dan Patt, proposes a possible approach. In it, a drone flotilla, consisting of about three dozen hunter-killer surface drones, two dozen uncrewed surface vessels carrying aerial drones, and three dozen autonomous undersea drones, would take up designated positions in a “kill box” adjacent to one of Taiwan’s western beaches if a Chinese invasion fleet had begun massing on the opposite side of the strait. Even if they were based in Japan or the Philippines, the drones could reach Taiwan within a day. Upon receiving a signal from operators remotely using Starlink or locally using a line-of-sight radio, the drones would act as a mobile minefield, attacking troop transports and their escorts inside Taiwan’s territorial waters. Widely available electro-optical and infrared sensors, coupled to recognition algorithms, would direct the drones to targets.

Although communications with operators onshore would likely be jammed, the drones could coordinate their actions locally using line-of-sight Internet Protocol–based networks like Silvus or TTNT. For example, surface vessels could launch aerial drones that would attack the pilot houses and radars of ships, while surface and undersea drones strike ships at the waterline. The drones could also coordinate to ensure they do not all strike the same target and to prioritize the largest targets first. These kinds of simple collaborations are routine in today’s drones.

Treating drones like mines reduces the complexity needed in their control systems and helps them comply with Pentagon rules for autonomous weapons. Rather than killer robots seeking out and destroying targets, the drones defending Taiwan would be passively waiting for Chinese forces to illegally enter a protected zone, within which they could be attacked.

Like Russia’s Black Sea Fleet, the Chinese navy will develop countermeasures to sea drones, such as employing decoy ships, attacking drones from the air, or using minesweepers to move them away from the invasion fleet. To stay ahead, operators will need to continue innovating tactics and behaviors through frequent exercises and experiments, like those underway at U.S. Navy Unmanned Surface Vessel Squadron Three. (Like the USVDIV-1, it is a unit under the U.S. Navy’s Surface Development Squadron One.) Lessons from such exercises would be incorporated into the defending drones as part of their programming before a mission.

The emergence of sea drones heralds a new era in naval warfare. After decades of focusing on increasingly lethal antiship missiles, navies now have to defend against capable and widely proliferating threats on, above, and below the water. And while sea drone swarms may be mainly a concern for coastal areas, these choke points are critical to the global economy and most nations’ security. For U.S. and allied fleets, especially, naval drones are a classic combination of threat and opportunity. As the Hellscape concept suggests, uncrewed vessels may be a solution to some of the most challenging and sweeping of modern naval scenarios for the Pentagon and its allies—and their adversaries.

This article was updated on 10 July 2024. An earlier version stated that sea drones from Saronic Technologies are being purchased by the U.S. Department of Defense’s Defense Innovation Unit. This could not be publicly confirmed.

Vodafone Launches Private 5G Tech to Compete With Wi-Fi



As the world’s 5G rollout continues with its predictable fits and starts, the cellular technology is also starting to move into a space already dominated by another wireless tech: Wi-Fi. Private 5G networks—in which a person or company sets up their own facility-wide cellular network—are today finding applications where Wi-Fi was once the only viable game in town. This month, the Newbury, England–based telecom company Vodafone is releasing a Raspberry Pi–based private 5G base station that it is now being aimed at developers, who might then jump-start a wave of private 5G innovation.

“The Raspberry Pi is the most affordable CPU[-based] computer that you can get,” says Santiago Tenorio, network architecture director at Vodafone. “Which means that what we build, in essence, has a similar bill of materials as a good quality Wi-Fi router.”

The company has teamed with the Surrey, England–based Lime Microsystems to release a crowd-funded range of private 5G base-station kits ranging in price from US $800 to $12,000.

“In a Raspberry Pi—in this case, a Raspberry Pi 4 is what we used—then you can be sure you can run that anywhere, because it’s the tiniest processor that you can have,” Tenorio says.

a person holding a black box in their hand Santiago Tenorio holds one of Lime Microsystems’ private 5G base-station kits.Vodafone

Private 5G for Drones and Bakeries

There are a range of reasons, Tenorio says, why someone might want their own private 5G network. At the moment, the scenarios mostly concern companies and organizations—although individual expert users could still be drawn to, for instance, 5G’s relatively low latency and network flexibility.

Tenorio highlighted security and mobility as two big selling points for private 5G.

A commercial storefront business, for instance, might be attracted to the extra security protections that a SIM card can provide compared to password-based wireless network security. Because each SIM card contains its own unique identifier and encryption keys, thereby also enabling a network to be able to recognize and authorize each individual connection, Tenorio says private 5G network security is a considerable selling point.

Plus, Tenorio says, it’s simpler for customers to access. Envisioning a use case of a bakery with its own privately deployed 5G network, he says, “You don’t need a password. You don’t need a conversation [with a clerk behind a counter] or a QR code. You simply walk into the bakery, and you are into the bakery’s network.”

As to mobility, Tenorio suggests one emergency relief and rescue application that might rely on the presence of a nearby 5G station that causes devices in its range to ping.

Setting up a private 5G base station on a drone, Tenorio says, would enable that drone to fly over a disaster area and, via its airborne network, send a challenge signal to all devices in its coverage area to report in. Any device receiving that signal with a compatible SIM card then responds with its unique identification information.

“Then any phone would try to register,” Tenorio says. “And then you would know if there is someone [there].”

Not only that, but because the ping would be from a device with a SIM card, the private 5G rescue drone in the above scenario could potentially provide crucial information about each individual, just based on the device’s identifier alone. And that user-identifying feature of private 5G isn’t exactly irrelevant to a bakery owner—or to any other commercial customer—either, Tenorio says.

“If you are a bakery,” he says, “You could actually know who your customers are, because anyone walking into the bakery would register on your network and would leave their [International Mobile Subscriber Identity].”

Winning the Lag Race

According to Christian Wietfeld, professor of electrical engineering at the Technical University of Dortmund in Germany, private 5G networks also bring the possibility of less lag. His team has tested private 5G deployments—although, Wietfeld says that they haven’t yet tested the present Vodafone/Lime Microsystem base station—and have found private 5G to provide reliably better connectivity.

Wietfeld’s team will present their research at the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications in September in Valencia, Spain. They found that private 5G can deliver connections up to 10 times as fast as connections in networks with high loads, compared to Wi-Fi (the IEEE 802.11 wireless standard).

“The additional cost and effort to operate a private 5G network pays off in lower downtimes of production and less delays in delivery of goods,” Wietfeld says. “Also, for safety-critical use cases such as on-campus teleoperated driving, private 5G networks provide the necessary reliability and predictability of performance.”

For Lime Networks, according to the company’s CEO and founder Ebrahim Bushehri, the challenge comes in developing a private 5G base station that maximized versatility and openness to whatever kinds of applications developers could envision—while still being reasonably inexpensive and retaining a low-power envelope.

“The solution had to be ultraportable and with an optional battery pack which could be mounted on drones and autonomous robots, for remote and tactical deployments, such as emergency-response scenarios and temporary events,” Bushehri says.

Meanwhile, the crowdfunding behind the device’s rollout, via the website Crowd Supply, allows both companies to keep tabs on the kinds of applications the developer community is envisioning for this technology, he says.

“Crowdfunding,” Bushehri says, “Is one of the key indicators of community interest and engagement. Hence the reason for launching the campaign on Crowd Supply to get feedback from early adopters.”

Here’s the Most Buglike Robot Bug Yet



Insects have long been an inspiration for robots. The insect world is full of things that are tiny, fully autonomous, highly mobile, energy efficient, multimodal, self-repairing, and I could go on and on but you get the idea—insects are both an inspiration and a source of frustration to roboticists because it’s so hard to get robots to have anywhere close to insect capability.

We’re definitely making progress, though. In a paper published last month in IEEE Robotics and Automation Letters, roboticists from Shanghai Jong Tong University demonstrated the most buglike robotic bug I think I’ve ever seen.


A Multi-Modal Tailless Flapping-Wing Robot www.youtube.com

Okay so it may not look the most buglike, but it can do many very buggy bug things, including crawling, taking off horizontally, flying around (with six degrees of freedom control), hovering, landing, and self-righting if necessary. JT-fly weighs about 35 grams and has a wingspan of 33 centimeters, using four wings at once to fly at up to 5 meters per second and six legs to scurry at 0.3 m/s. Its 380 milliampere-hour battery powers it for an actually somewhat useful 8-ish minutes of flying and about 60 minutes of crawling.

While that amount of endurance may not sound like a lot, robots like these aren’t necessarily intended to be moving continuously. Rather, they move a little bit, find a nice safe perch, and then do some sensing or whatever until you ask them to move to a new spot. Ideally, most of that movement would be crawling, but having the option to fly makes JT-fly exponentially more useful.

Or, potentially more useful, because obviously this is still very much a research project. It does seem like there’s a bunch more optimization that could be done here. For example, JT-fly uses completely separate systems for flying and crawling, with two motors powering the legs and two additional motors powering the wings—plus two wing servos for control. There’s currently a limited amount of onboard autonomy, with an inertial measurement unit, barometer, and wireless communication, but otherwise not much in the way of useful payload.

Insects are both an inspiration and a source of frustration to roboticists because it’s so hard to get robots to have anywhere close to insect capability.

It won’t surprise you to learn that the researchers have disaster-relief applications in mind for this robot, suggesting that “after natural disasters such as earthquakes and mudslides, roads and buildings will be severely damaged, and in these scenarios, JT-fly can rely on its flight ability to quickly deploy into the mission area.” One day, robots like these will actually be deployed for disaster relief, and although that day is not today, we’re just a little bit closer than we were before.

“A Multi-Modal Tailless Flapping-Wing Robot Capable of Flying, Crawling, Self-Righting and Horizontal Takeoff,” by Chaofeng Wu, Yiming Xiao, Jiaxin Zhao, Jiawang Mou, Feng Cui, and Wu Liu from Shanghai Jong Tong University, is published in the May issue of IEEE Robotics and Automation Letters.

Video Friday: Multitasking



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDS
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

Do you have trouble multitasking? Cyborgize yourself through muscle stimulation to automate repetitive physical tasks while you focus on something else.

[ SplitBody ]

By combining a 5,000 frame-per-second (FPS) event camera with a 20-FPS RGB camera, roboticists from the University of Zurich have developed a much more effective vision system that keeps autonomous cars from crashing into stuff, as described in the current issue of Nature.

[ Nature ]

Mitsubishi Electric has been awarded the GUINNESS WORLD RECORDS title for the fastest robot to solve a puzzle cube. The robot’s time of 0.305 second beat the previous record of 0.38 second, for which it received a GUINNESS WORLD RECORDS certificate on 21 May 2024.

[ Mitsubishi ]

Sony’s AIBO is celebrating its 25th anniversary, which seems like a long time, and it is. But back then, the original AIBO could check your email for you. Email! In 1999!

I miss Hotmail.

[ AIBO ]

SchniPoSa: schnitzel with french fries and a salad.

[ Dino Robotics ]

Cloth-folding is still a really hard problem for robots, but progress was made at ICRA!

[ ICRA Cloth Competition ]

Thanks, Francis!

MIT CSAIL researchers enhance robotic precision with sophisticated tactile sensors in the palm and agile fingers, setting the stage for improvements in human-robot interaction and prosthetic technology.

[ MIT ]

We present a novel adversarial attack method designed to identify failure cases in any type of locomotion controller, including state-of-the-art reinforcement-learning-based controllers. Our approach reveals the vulnerabilities of black-box neural network controllers, providing valuable insights that can be leveraged to enhance robustness through retraining.

[ Fan Shi ]

In this work, we investigate a novel integrated flexible OLED display technology used as a robotic skin-interface to improve robot-to-human communication in a real industrial setting at Volkswagen or a collaborative human-robot interaction task in motor assembly. The interface was implemented in a workcell and validated qualitatively with a small group of operators (n=9) and quantitatively with a large group (n=42). The validation results showed that using flexible OLED technology could improve the operators’ attitude toward the robot; increase their intention to use the robot; enhance their perceived enjoyment, social influence, and trust; and reduce their anxiety.

[ Paper ]

Thanks, Bram!

We introduce InflatableBots, shape-changing inflatable robots for large-scale encountered-type haptics in VR. Unlike traditional inflatable shape displays, which are immobile and limited in interaction areas, our approach combines mobile robots with fan-based inflatable structures. This enables safe, scalable, and deployable haptic interactions on a large scale.

[ InflatableBots ]

We present a bioinspired passive dynamic foot in which the claws are actuated solely by the impact energy. Our gripper simultaneously resolves the issue of smooth absorption of the impact energy and fast closure of the claws by linking the motion of an ankle linkage and the claws through soft tendons.

[ Paper ]

In this video, a 3-UPU exoskeleton robot for a wrist joint is designed and controlled to perform wrist extension, flexion, radial-deviation, and ulnar-deviation motions in stroke-affected patients. This is the first time a 3-UPU robot has been used effectively for any kind of task.

“UPU” stands for “universal-prismatic-universal” and refers to the actuators—the prismatic joints between two universal joints.

[ BAS ]

Thanks, Tony!

BRUCE Got Spot-ted at ICRA2024.

[ Westwood Robotics ]

Parachutes: maybe not as good of an idea for drones as you might think.

[ Wing ]

In this paper, we propose a system for the artist-directed authoring of stylized bipedal walking gaits, tailored for execution on robotic characters. To demonstrate the utility of our approach, we animate gaits for a custom, free-walking robotic character, and show, with two additional in-simulation examples, how our procedural animation technique generalizes to bipeds with different degrees of freedom, proportions, and mass distributions.

[ Disney Research ]

The European drone project Labyrinth aims to keep new and conventional air traffic separate, especially in busy airspaces such as those expected in urban areas. The project provides a new drone-traffic service and illustrates its potential to improve the safety and efficiency of civil land, air, and sea transport, as well as emergency and rescue operations.

[ DLR ]

This Carnegie Mellon University Robotics Institute seminar, by Kim Baraka at Vrije Universiteit Amsterdam, is on the topic “Why We Should Build Robot Apprentices and Why We Shouldn’t Do It Alone.”

For robots to be able to truly integrate human-populated, dynamic, and unpredictable environments, they will have to have strong adaptive capabilities. In this talk, I argue that these adaptive capabilities should leverage interaction with end users, who know how (they want) a robot to act in that environment. I will present an overview of my past and ongoing work on the topic of human-interactive robot learning, a growing interdisciplinary subfield that embraces rich, bidirectional interaction to shape robot learning. I will discuss contributions on the algorithmic, interface, and interaction design fronts, showcasing several collaborations with animal behaviorists/trainers, dancers, puppeteers, and medical practitioners.

[ CMU RI ]

Using AI to Clear Land Mines in Ukraine



Stephen Cass: Hello. I’m Stephen Cass, Special Projects Director at IEEE Spectrum. Before starting today’s episode hosted by Eliza Strickland, I wanted to give you all listening out there some news about this show.

This is our last episode of Fixing the Future. We’ve really enjoyed bringing you some concrete solutions to some of the world’s toughest problems, but we’ve decided we’d like to be able to go deeper into topics than we can in the course of a single episode. So we’ll be returning later in the year with a program of limited series that will enable us to do those deep dives into fascinating and challenging stories in the world of technology. I want to thank you all for listening and I hope you’ll join us again. And now, on to today’s episode.

Eliza Strickland: Hi, I’m Eliza Strickland for IEEE Spectrum‘s Fixing the Future podcast. Before we start, I want to tell you that you can get the latest coverage from some of Spectrum’s most important beats, including AI, climate change, and robotics, by signing up for one of our free newsletters. Just go to spectrum.IEEE.org/newsletters to subscribe.

Around the world, about 60 countries are contaminated with land mines and unexploded ordnance, and Ukraine is the worst off. Today, about a third of its land, an area the size of Florida, is estimated to be contaminated with dangerous explosives. My guest today is Gabriel Steinberg, who co-founded both the nonprofit Demining Research Community and the startup Safe Pro AI with his friend, Jasper Baur. Their technology uses drones and artificial intelligence to radically speed up the process of finding land mines and other explosives. Okay, Gabriel, thank you so much for joining me on Fixing the Future today.

Gabriel Steinberg: Yeah, thank you for having me.

Strickland: So I want to start by hearing about the typical process for demining, and so the standard operating procedure. What tools do people use? How long does it take? What are the risks involved? All that kind of stuff.

Steinberg: Sure. So humanitarian demining hasn’t changed significantly. There’s been evolutions, of course, since its inception and about the end of World War I. But mostly, the processes have been the same. People stand from a safe location and walk around an area in areas that they know are safe, and try to get as much intelligence about the contamination as they can. They ask villagers or farmers, people who work around the area and live around the area, about accidents and potential sightings of minefields and former battle positions and stuff. The result of this is a very general idea, a polygon, of where the contamination is. After that polygon and some prioritization based on danger to civilians and economic utility, the field goes into clearance. The first part is the non-technical survey, and then this is clearance. Clearance happens one of three ways, usually, but it always ends up with a person on the ground basically doing extreme gardening. They dig out a certain standard amount of the soil, usually 13 centimeters. And with a metal detector, they walk around the field and a mine probe. They find the land mines and nonexploded ordnance. So that always is how it ends.

To get to that point, you can also use mechanical assets, which are large tillers, and sometimes dogs and other animals are used to walk in lanes across the contaminated polygon to sniff out the land mines and tell the clearance operators where the land mines are.

Strickland: How do you hope that your technology will change this process?

Steinberg: Well, my technology is a drone-based mapping solution, basically. So we provide a software to the humanitarian deminers. They are already flying drones over these areas. Really, it started ramping up in Ukraine. The humanitarian demining organizations have started really adopting drones just because it’s such a massive problem. The extent is so extreme that they need to innovate. So we provide AI and mapping software for the deminers to analyze their drone imagery much more effectively. We hope that this process, or our software, will decrease the amount of time that deminers use to analyze the imagery of the land, thereby more quickly and more effectively constraining the areas with the most contamination. So if you can constrain an area, a polygon with a certainty of contamination and a high density of contamination, then you can deploy the most expensive parts of the clearance process, which are the humans and the machines and the dogs. You can deploy them to a very specific area. You can much more cost-effectively and efficiently demine large areas.

Strickland: Got it. So it doesn’t replace the humans walking around with metal detectors and dogs, but it gets them to the right spots faster.

Steinberg: Exactly. Exactly. At the moment, there is no conception of replacing a human in demining operations, and people that try to push that eventuality are usually disregarded pretty quickly.

Strickland: How did you and your co-founder, Jasper, first start experimenting with the use of drones and AI for detecting explosives?

Steinberg: So it started in 2016 with my partner, Jasper Baur, doing a research project at Binghamton University in the remote sensing and geophysics lab. And the project was to detect a specific anti-personnel land mine, the PFM-1. Then found— it’s a Russian-made land mine. It was previously found in Afghanistan. It still is found in Afghanistan, but it’s found in much higher quantities right now in Ukraine. And so his project was to detect the PFM-1 anti-personnel land mine using thermal imagery from drones. It sort of snowballed into quite an intensive research project. It had multiple papers from it, multiple researchers, some awards, and most notably, it beat NASA at a particular Tech Briefs competition. So that was quite a morale boost.

And at some point, Jasper had the idea to integrate AI into the project. Rightfully, he saw the real bottleneck as not the detecting of land mines in drone imagery, but the analysis of land mines in drone imagery. And that really has become— I mean, he knew, somehow, that that would really become the issue that everybody is facing. And everybody we talked to in Ukraine is facing that issue. So machine learning really was the key for solving that problem. And I joined the project in 2018 to integrate machine learning into the research project. We had some more papers, some more presentations, and we were nearing the end of our college tenure, of our undergraduate degree, in 2020. So at that time– but at that time, we realized how much the field needed this. We started getting more and more into the mine action field, and realizing how neglected the field was in terms of technology and innovation. And we felt an obligation to bring our technology, really, to the real world instead of just a research project. There were plenty of research projects about this, but we knew that it could be more and that it should. It really should be more. And we felt we had the– for some reason, we felt like we had the capability to make that happen.

So we formed a nonprofit, the Demining Research Community, in 2020 to try to raise some funding for this project. Our for-profit end of that, of our endeavors, was acquired by a company called Safe Pro Group in 2023. Yeah, 2023, about one year ago exactly. And the drone and AI technology became Safe Pro AI and our flagship product spotlight. And that’s where we’re bringing the technology to the real world. The Demining Research Community is providing resources for other organizations who want to do a similar thing, and is doing more research into more nascent technologies. But yeah, the real drone and AI stuff that’s happening in the real world right now is through Safe Pro.

Strickland: So in that early undergraduate work, you were using thermal sensors. I know now the Spotlight AI system is using more visual. Can you talk about the different modalities of sensing explosives and the sort of trade-offs you get with them?

Steinberg: Sure. So I feel like I should preface this by saying the more high tech and nascent the technology is, the more people want to see it apply to land mine detection. But really, we have found from the problems that people are facing, by far the most effective modality right now is just visual imagery. People have really good visual sensors built into their face, and you don’t need a trained geophysicist to observe the data and very, very quickly get actionable intelligence. There’s also plenty of other benefits. It’s cheaper, much more readily accessible in Ukraine and around the world to get built-in visual sensors on drones. And yeah, just processing the data, and getting the intelligence from the data, is way easier than anything else.

I’ll talk about three different modalities. Well, I guess I could talk about four. There’s thermal, ground penetrating radar, magnetometry, and lidar. So thermal is what we started with. Thermal is really good at detecting living things, as I’m sure most people can surmise. But it’s also pretty good at detecting land mines, mostly large anti-tank land mines buried under a couple millimeters, or up to a couple centimeters, of soil. It’s not super good at this. The research is still not super conclusive, and you have to do it at a very specific time of day, in the morning and at night when, basically the soil around the land mine heats up faster than the land mine and you cause a thermal anomaly, or the sun causes a thermal anomaly. So it can detect things, land mines, in some amount of depth in certain soils, in certain weather conditions, and can only detect certain types of land mines that are big and hefty enough. So yeah, that’s thermal.

Ground penetrating radar is really good for some things. It’s not really great for land mine detection. You have to have really expensive equipment. It takes a really long time to do the surveys. However, it can get plastic land mines under the surface. And it’s kind of the only modality that can do that with reliability. However, you need to train geophysicists to analyze the data. And a lot of the time, the signatures are really non-unique and there’s going to be a lot of false positives. Magnetometry is the other-- by the way, all of this is airborne that I’m referring to. Ground-based GPR and magnetometry are used in demining of various types, but airborne is really what I’m talking about.

For magnetometry, it’s more developed and more capable than ground penetrating radar. It’s used, actually, in the field in Ukraine in some scenarios, but it’s still very expensive. It needs a trained geophysicist to analyze the data, and the signatures are non-unique. So whether it’s a bottle can or a small anti-personnel land mine, you really don’t know until you dig it up. However, I think if I were to bet on one of the other modalities becoming increasingly useful in the next couple of years, it would be airborne magnetometry.

Lidar is another modality that people use. It’s pretty quick, also very expensive, but it can reliably map and find surface anomalies. So if you want to find former fighting positions, sometimes an indicator of that is a trench line or foxholes. Lidar is really good at doing that in conflicts from long ago. So there’s a paper that the HALO Trust published of flying a lidar mission over former fighting positions, I believe, in Angola. And they reliably found a former trench line. And from that information, they confirmed that as a hazardous area. Because if there is a former front line on this position, you can pretty reliably say that there is going to be some explosives there.

Strickland: And so you’ve done some experiments with some of these modalities, but in the end, you found that the visual sensor was really the best bet for you guys?

Steinberg: Yeah. It’s different. The requirements are different for different scenarios and different locations, really. Ukraine has a lot of surface ordnance. Yeah. And that’s really the main factor that allows visual imagery to be so powerful.

Strickland: So tell me about what role machine learning plays in your Spotlight AI software system. Did you create a model trained on a lot of— did you create a model based on a lot of data showing land mines on the surface?

Steinberg: Yeah. Exactly. We used real-world data from inert, non-explosive items, and flew drone missions over them, and did some physical augmentation and some programmatic augmentation. But all of the items that we are training on are real-life Russian or American ordnance, mostly. We’re also using the real-world data in real minefields that we’re getting from Ukraine right now. That is, obviously, the most valuable data and the most effective in building a machine learning model. But yeah, a lot of our data is from inert explosives, as well.

Strickland: So you’ve talked a little bit about the current situation in Ukraine, but can you tell me more about what people are dealing with there? Are there a lot of areas where the battle has moved on and civilians are trying to reclaim roads or fields?

Steinberg: Yeah. So the fighting is constantly ongoing, obviously, in eastern Ukraine, but I think sometimes there’s a perspective of a stalemate. I think that’s a little misleading. There’s lots of action and violence happening on the front line, which constantly contaminates, cumulatively, the areas that are the front line and the gray zone, as well as areas up to 50 kilometers back from both sides. So there’s constantly artillery shells going into villages and cities along the front line. There’s constantly land mines, new mines, being laid to reinforce the positions. And there’s constantly mortars. And everything is constant. In some fights—I just watched the video yesterday—one of the soldiers said you could not count to five without an explosion going off. And this is just one location in one city along the front. So you can imagine the amount of explosive ordnance that are being fired, and inevitably 10, 20, 30 percent of them are sometimes not exploding upon impact, on top of all the land mines that are being purposely laid and not detonating from a vehicle or a person. These all just remain after the war. They don’t go anywhere. So yeah, Ukraine is really being littered with explosive ordnance and land mines every day.

This past year, there hasn’t been terribly much movement on the front line. But in the Ukrainian counteroffensive in 2020— I guess the last major Ukrainian counteroffensive where areas of Mykolaiv, which is in the southeast, were reclaimed, the civilians started repopulating the city almost immediately. There are definitely some villages that are heavily contaminated, that people just deserted and never came back to, and still haven’t come back to after them being liberated. But a lot of the areas that have been liberated, they’re people’s homes. And even if they’re destroyed, people would rather be in their homes than be refugees. And I mean, I totally understand that. And it just puts the responsibility on the deminers and the Ukrainian government to try to clear the land as fast as possible. Because after large liberations are made, people want to come back almost all the time. So it is a very urgent problem as the lines change and as land is liberated.

Strickland: And I think it was about a year ago that you and Jasper went to the Ukraine for a technology demonstration set up by the United Nations. Can you tell about that, and what the task was, and how your technology fared?

Steinberg: Sure. So yeah, the United Nations Development Program invited us to do a demonstration in northern Ukraine to see how our technology, and other technologies similar to it, performed in a military training facility in Ukraine. So everybody who’s doing this kind of thing, which is not many people, but there are some other organizations, they have their own metrics and their own test fields— not always, but it would be good if they did. But the UNDP said, “No, we want to standardize this and try to give recommendations to the organizations on the ground who are trying to adopt these technologies.” So we had five hours to survey the field and collect as much data as we could. And then we had 72 hours to return the results. We—

Strickland: Sorry. How big was the field?

Steinberg: The field was 25 hectares. So yeah, the audience at home can type 25 hectares to amount of football fields. I think it’s about 60. But it’s a large area. So we’d never done anything like that. That was really, really a shock that it was that large of an area. I think we’d only done half a hectare at a time up to that point. So yeah, it was pretty daunting. But we basically slept very, very little in those 72 hours, and as a result, produced what I think is one of the best results that the UNDP got from that test. We didn’t detect everything, but we detected most of the ordnance and land mines that they had laid. We also detected some that they didn’t know were there because it was a military training facility. So there were some mortars being fired that they didn’t know about.

Strickland: And I think Jasper told me that you had to sort of rewrite your software on the fly. You realized that the existing approach wasn’t going to work and you had to do some all-nighter to recode?

Steinberg: Yeah. Yeah, I remember us sitting in a Georgian restaurant— Georgia, the country, not the state, and racking our brain, trying to figure out how we were going to map this amount of land. We just found out how big the area was going to be and we were a little bit stunned. So we devised a plan to do it in two stages. The first stage was where we figured out in the drone images where the contaminated regions were. And then the second stage was to map those areas, just those areas. Now, our software can actually map the whole thing, and pretty casually too. So not to brag. But at the time, we had lots less development under our belt. And yeah, therefore we just had to brute force it through Georgian food and brainpower.

Strickland: You and Jasper just got back from another trip to the Ukraine a couple of weeks ago, I think. Can you talk about what you were doing on this trip, and who you met with?

Steinberg: Sure. This trip was much less stressful, although stressful in different ways than the UNDP demo. Our main objectives were to see operations in action. We had never actually been to real minefields before. We’d been in some perhaps contaminated areas, but never in a real minefield where you can say, “Here was the Russian position. There are the land mines. Do not go there.” So that was one of the main objectives. That was very powerful for us to see the villages that were destroyed and are denied to the citizens because of land mines and unexploded ordnance. It’s impossible to describe how that feels being there. It’s really impactful, and it makes the work that I’m doing feel not like I have a choice anymore. I feel very much obligated to do my absolute best to help these people.

Strickland: Well, I hope your work continues. I hope there’s less and less need for it over time. But yeah, thank you for doing this. It’s important work. And thanks for joining me on Fixing the Future.

Steinberg: My pleasure. Thank you for having me.

Strickland: That was Gabriel Steinberg speaking to me about the technology that he and Jasper Baur developed to help rid the world of land mines. I’m Eliza Strickland, and I hope you’ll join us next time on Fixing the Future.

❌