Reading view

There are new articles available, click to refresh the page.

Apple Vision Pro – Influencing the Influencers & “Information Density”

Introduction

Many media outlets, large and small, both text and video, use this blog as a resource for technical information on mixed reality headsets. Sometimes, they even give credit. In the past two weeks, this blog was prominently cited in YouTube videos by Linus Tech Tips (LTT) and Artur Tech Tales. Less fortunately, Adam Savage’s Tested, hosted by Norman Chen in his Apple Vision Pro Review, used a spreadsheet test pattern from this blog to demonstrate foveated rendering issues.

I will follow up with a discussion of Linus’s Tech Tips video, which deals primarily with human factors. In particular, I want to discuss the “Information Density issue” of virtual versus physical monitors, which the LTT video touched on.

Influencing the Influencers On Apple Vision Pro

Linus Tech Tips (LTT)

In their “Apple Vision Pro—A PC Guy’s Perspective,” Linus Tech Tips showed several pages from this blog that were nice enough to prominently feature the pages they were using and the web addresses (below). Additionally, I enjoyed their somewhat humorous physical “simulation” of the AVP (more on that in a bit). LTT used images (below-left and below-center) from the blog to explain how the optics distort the display and how the processing in the AVP is used in combination with eye tracking to reduce that distortion. LTT also uses images from the blog (below-right) to show how the field of view (FOV) changes based on the distance from the eye to the optics.

Linus Tech Tips Citing this Blog

Adam Savages’ Tested

Adam Savage’s Test with host Norman Chan’s review of the Apple Vision Pro used this blog’s AVP-XLS-on-BLACK-Large-Array from Spreadsheet “Breaks” The Apple Vision Pro’s (AVP) Eye-Tracking/Foveation & the First Through-the-optics Pictures to discuss how the foveated boundaries of the Apple Vision Pro are visible. While the spreadsheet is taken from this blog, I didn’t see any references given.

The Adam Savages Tested video either missed or was incorrect on several points it made:

  • It missed the point of the blog article that the foveated rendering has problems with spreadsheets when directly rendered from Excel on the AVP instead of mirrored by a MacBook.
  • It stated that taking pictures through the optics is impossible, which this blog has been doing for over a month (including in this article).
  • It said that the AVP’s passthrough 3-D perspective was good with short-range but bad with long-range objects, but Linuses Tech tips (discussed later) find the opposite. The AVP’s accuracy is poor with short-range objects due to the camera placement.
  • It said there was no “warping” of the real world with video passthrough, which is untrue. The AVP does less warping than the Meta Quest 3 and Quest Pro, but it still warps objects less than 0.6 meters (2 feet) away and toward the center to the upper part of the user’s view. It is impossible to be both perspective-correct and not warp with the AVP’s camera placement with near objects; the AVP seems to trade off being perspective-correct to have less warping than the Meta headsets.

Artur’s Tech Tales – Interview on AVP’s Optical Design

Artur’s Tech Tales Apple Vision Pro OPTICS—Deep Technical Analysis, featuring Arthur Rabner (CEO of Hypervision), includes an interview and presentation by Hypervision’s CEO, Arther Rabner. In his presentation, Rabner mentions this blog several times. The video details the AVP optics and follows up on Hypervision’s white paper discussed in Apple Vision Pro (Part 4) – Hypervision Pancake Optics Analysis.

Linus Tech Tips on Apple Vision Pro’s Human Factors

Much of the Linus Tech Tips (LTT) videos deal with human factors and user interface issues. For the rest of this article, I will discuss and expand upon comments made in the LTT video. Linus also commented on the passthrough camera’s “shutter angle,” but I moved my discussion on that subject to the “Appendix” at the end as it was a bit off-topic and needed some explanation.

It makes a mess of your face

At 5:18 in the video, Linus takes the headset off and shows the red marks left by the Apple Vision Pro (left), which I think may have been intentional after Linus complained about issues with the headband earlier. For reference, I have included the marks left by the Apple Vision Pro on my face (below-right). I sometimes joke that I wonder if I wear it long enough, it will make a groove in my skull to help hold up the headset.

An Apple person who is an expert at AVP fitting will probably be able to tell based on the marks on our faces if we have the “wrong” face interface. Linus’s headset makes stronger marks on his cheeks, whereas mine makes the darkest marks on my forehead. As I use inserts, I have a fairly thick (but typical for wearing inserts) 25W face hood with the thinner “W” interface, and AVP’s eye detection often complains that I need to get my eyes closer to the lenses. So, I end up cranking the solo band almost to the point where I feel my pulse on my forehead like a blood pressure measuring cuff (perhaps a health “feature” in the future?).

Need for game controllers

For virtual reality, Linus is happy with the resolution and placement of virtual objects in the real world. But he stated, “Unfortunately, the whole thing falls apart when you interact with the game.” Linus then goes into the many problems of not having controllers and relying on hand tracking alone.

I’m not a VR gamer, but I agree with The Verge that AVP’s hand and eye tracking is “magic until it’s not.” I am endlessly frustrated with eye-tracking-based finger selection. Even with the headset cranked hard against my face, the eye tracking is unstable even after recalibration of the IPD and eye tracking many times. I consider eye and hand tracking a good “secondary” selection tool that needs an accurate primary selection tool. I have an Apple Magic Pad that “works” with the AVP but does not work in “3-D space.”

Windows PC Gaming Video Mirroring via WiFi has Lag, Low Resolution, and Compression Artifacts

Linus discussed using the Steam App on the AVP to play games. He liked that he could get a large image and lay back, but there is some lag, which could be problematic for some games, particularly competitive ones; the resolution is limited to 1080p, and compression artifacts are noticeable.

Linus also discussed using the Sunshine (streaming server on the PC) and Moonlight (remote access on the AVP) apps to mirror Windows PCs. While this combination supports up to 4K at 120p, Linus says you will need an incredibly good wireless access point for the higher resolution and frame rates. In terms of effective resolution and what I like to call “Information Density,” these apps will still suffer the loss of significant resolution due to trying to simulate a virtual monitor in 3-D space, as I have discussed in Apple Vision Pro (Part 5C) – More on Monitor Replacement is Ridiculous and Apple Vision Pro (Part 5A) – Why Monitor Replacement is Ridiculous and shown with through the lens pictures in Apple Vision Pro’s (AVP) Image Quality Issues – First Impressions and Apple Vision Pro’s Optics Blurrier & Lower Contrast than Meta Quest 3.

From a “pro” design perspective, it is rather poor on Apple’s part that the AVP does not support a direct Thunderbolt link for both data and power, while at the same time, it requires a wired battery. I should note that the $300 developer’s strap supports a lowish 100Mbs ethernet (compared to USB-C/Thunderbolt 0.48 to 40 Gbs) speed data through a USB-C connector while still requiring the battery pack for power. There are many unused pins on the developer’s strap, and there are indications in the AVP’s software that the strap might support higher-speed connections (and maybe access to peripherals) in the future.

Warping effect of passthrough

In terms of video passthrough, at 13:43 in the video, Linus comments about the warping effect of close objects and depth perception being “a bit off.” He also discussed that you are looking at the world through phone-type cameras. When you move your head, the passthrough looks duller, with a significant blur (“Jello”).

The same Linus Tech Tip video also included humorous simulations of the AVP environment with people carrying large-screen monitors. At one point (shown below), they show a person wearing a respirator mask (to “simulate” the headset) surrounded by three very large monitors/TVs. They show how the user has to move their head around to see everything. LTT doesn’t mention that those monitors’ angular resolution is fairly low, which is why those monitors need to be so big.

Sharing documents is a pain.

Linus discussed the AVP’s difficulty sharing documents with others in the same room. Part of this is because the MacBook’s display goes blank when mirroring onto the AVP. Linus discussed how he had to use a “bizarre workaround” of setting up a video conference to share a document with people in the same room.

Information Density – The AVP Delivers Effectively Multiple Large but Very Low-Resolution Monitors

The most important demonstration in the LTT video involves what I like to call the “Information Density” problem. The AVP, or any VR headset, has low information density when trying to emulate a 2-D physical monitor in 3-D space. It is a fundamental problem; the effective resolution of the AVP well less than half (linearly, less than a quarter two-dimensionally) of the resolution of the monitors that are being simulated (as discussed in Apple Vision Pro (Part 5C) – More on Monitor Replacement is Ridiculous and Apple Vision Pro (Part 5A) and shown with through the lens pictures in Apple Vision Pro’s (AVP) Image Quality Issues – First Impressions and Apple Vision Pro’s Optics Blurrier & Lower Contrast than Meta Quest 3). The key contributors to this issue are:

  • The peak display resolution in the center of the optics is only 44.4 pixels per degree (human vision it typically better than 60 ppd).
  • The 2-D/Monitor image must be resampled into 3-D space with an effective resolution loss greater than 2x.
  • If the monitor is to be viewable, it must be inscribed inside the oval sweet spot of the optics. In the case of the AVP, this cuts off about half the pixels.
  • While the AVP’s approximate horizontal FOV is about 100 degrees, the optical resolution drops considerably in the outer third of the optics. Only about the center 40-50 degrees of the FOV is usable for high-resolution content.
  • Simply put, the AVP needs more than double the PPD and better optics to provide typical modern computer monitors’ information/resolution density. Even then, it would be somewhat lacking in some aspects.

Below, show the close-up center (best case) through the AVP’s optics on the (left) and the same image at about the same FOV on a computer monitor (right). Things must be blown up about 2x (linearly) to be as legible on the AVP as on a good computer monitor.

Comparisons of AVP to a Computer Monitor and Quest 3 from Apple Vision Pro’s Optics Blurrier & Lower Contrast than Meta Quest 3

Some current issues with monitor simulation are “temporary software issues” that can be improved, but that is not true with the information density problem.

Linus states in the video (at 17:48) that setting up the AVP is a “bit of a chore,” but it should be understood most of the “chore” is due to current software limitations that could be fixed with better software. The most obvious problems, as identified by Linus, are that the AVP does not currently support multiple screens from a MacBook, and it does not save the virtual screen location of the MacBook. I think most people expect Apple to fix these problems at some point in the near future.

At 18:20, Linus showed the real multiple-monitor workspace of someone doing video editing (see below). While a bit extreme for some people with two vertically stacked 4K monitors in landscape orientation monitors and a third 4K monitor in portrait mode, it is not that far off what I have been using for over a decade with two large side-by-side monitors (today I have a 34″ 22:9 1440p “center monitor” and a 28″ 4K side monitor both in landscape mode).

I want to note a comment made by Linus (with my bold emphasis):

“Vision Pro Sounds like having your own personal Colin holding a TV for you and then allowing it to be repositioned and float effortlessly wherever you want. But in practice, I just don’t really often need to do that, and neither do a lot of people. For example, Nicole, here’s a real person doing real work [and] for a fraction of the cost of a Vision Pro, she has multiple 4K displays all within her field of view at once, and this is how much she has to move her head in order to look between them. Wow.  

Again, I appreciate this thing for the technological Marvel that it is—a 4K display in a single Square inch. But for optimal text clarity, you need to use most of those pixels, meaning that the virtual monitor needs to be absolutely massive for the Vision Pro to really shine.

The bold highlights above make the point about information density. A person can see all the information all at once and then, with minimal eye and head movement, see the specific information they want to see at that moment. Making text bigger only “works” for small amounts of content as it makes reading slower with larger head and eye movement and will tend to make the eyes more tired with movement over wider angles.

To drive the point home, the LTT video “simulates” an AVP desktop, assuming multiple monitor support but physically placing three very large monitors side by side with two smaller displays on top. They had the simulated user wear a paint respirator mask to “simulate” the headset (and likely for comic effect). I would like to add that each of those large monitors, even at that size, with the AVP, will have the resolution capability of more like a 1920x1080p monitor or about half linearly and one-fourth in area, the content of a 4K monitor.

Quoting Linus about this part of the video (with my bold emphasis):

It’s more like having a much larger TV that is quite a bit farther away, and that is a good thing in the sense that you’ll be focusing more than a few feet in front of you. But I still found that in spite of this, that it was a big problem for me if I spent more than an hour or so in spatial-computing-land.

Making this productivity problem worse is the fact that, at this time, the Vision Pro doesn’t allow you to save your layouts. So every time you want to get back into it, you’ve got to put it on, authenticate, connect to your MacBook, resize that display, open a safari window, put that over there where you want it, maybe your emails go over here, it’s a lot of friction that our editors, for example, don’t go through every time they want to sit down and get a couple hours of work done before their eyes and face hurt too much to continue.

I would classify Many of the issues Linus gave in the above quote as solvable in software for the AVP. What is not likely solvable in software are headaches, eye strain, and low angular resolution of the AVP relative to a modern computer monitor in a typical setup.

While speaking in the Los Angeles area at the SID LA One Day conference, I stopped in a Bigscreen Beyond to try out their headset for about three hours. I could wear the Bigscreen Beyond for almost three hours, where typically, I get a spitting headache with the AVP after about 40 minutes. I don’t know why, but it is likely a combination of much less pressure on my forehead and something to do with the optics. Whatever it is, there is clearly a big difference to me. It was also much easier to drink from a can (right) with the Bigscreen’s much-reduced headset.

Conclusion

It is gratifying to see the blog’s work reach a wide audience worldwide (about 50% of this blog’s audience is outside the USA). As a result of other media outlets picking up this blog’s work, the readership roughly doubled last month to about 50,000 (Google Analytics “Users”).

I particularly appreciated the Linus Tech Tip example of a real workspace in contrast to their “simulation” of the AVP workspace. It helps illustrate some human factor issues with having a headset simulate a computer monitor, including information density. I keep pounding on the Information Density issue because it seems underappreciated by many of the media reports on the AVP.

Appendix Linus Comments on AVP’s “Weird Camera Shutter Angle”

I moved this discussion to this Appendix because it involves some technical discussion that, while it may be important, may not be of interest to everyone and takes some time to explain. At the same time, I didn’t want to ignore it as it brings up a potential issue with the AVP.

At about 16:30 in the LTT Video, Linus also states that the Apple Vision Pro cameras use “weird shutter angles to compensate for the flickering of lights around you, causing them [the AVP] to crank up the ISO [sensitivity], adding a bunch of noise to the image.”

From Wikipedia – Example of a 180-degree shutter angle

For those that don’t know, “shutter angle” (see also https://www.digitalcameraworld.com/features/cheat-sheet-shutter-angles-vs-shutter-speeds) is a hold-over term from the days of mechanical movie shutters where the shutter was open for a percentage of a 360-degree rotating shutter (right). Still, it is now applied to camera shutters, including “electronic shutters” (many large mirrorless cameras have mechanical and electronic shutter options with different effects). A 180-degree shutter angle means the shutter/camera scanning is open one-half the frame time, say 1/48th of a 1/24th of a second frame time or 1/180th of a 1/90th of a second frame rate. Typically, people talk about how different shutter angles affect the choppiness of motion and motion blur, not brightness or ISO, even though it does affect ISO/Brightness due to the change in exposure time.

I’m not sure why Linus is saying that certain lights are reducing the shutter angle, thus increasing ISO, unless he is saying that the shutter time is being reduced with certain types of light (or simply bright lights) or with certain types of flickering lights the cameras are missing much of the light. If so, it is a roundabout way of discussing the camera issue; as discussed above, the term shutter angle is typically used in the context of motion effects, with brightness/ISO being more of a side issue.

A related temporal issue is the duty cycle of the displays (as opposed to the passthrough cameras), which has a similar “shutter angle” issue. VR users have found that displays with long on-time duty cycles cause perceived blurriness with rapid head movement. Thus, they tend to prefer display technologies with low-duty cycles. However, low display duty cycles typically result in less display brightness. LED backlit LCDs can drive the LEDs harder for shorter periods to help make up for the brightness loss. However, OLED microdisplays commonly have relatively long (sometimes 100%) on-time duty cycles. I have not yet had a chance to check the duty cycle of the AVP, but it is one of the things on my to-do list. In light of Linus’s comments, I will want to set up some experiments to check out the temporal behavior of the AVP’s passthrough camera.

Apple Vision Pro’s Optics Blurrier & Lower Contrast than Meta Quest 3

Introduction – Sorry, But It’s True

I have taken thousands of pictures through dozens of different headsets, and I noticed that the Apple Vision Pro (AVP) image is a little blurry, so I decided to investigate. Following up on my Apple Vision Pro’s (AVP) Image Quality Issues – First Impressions article, this article will compare the AVP to the Meta Quest 3 by taking the same image at the same size in both headsets, and I got what many will find to be surprising results.

I know all “instant experts” are singing the praises of “the Vision Pro as having such high resolution that there is no screen door effect,” but they don’t seem to understand that the screen door effect is hiding in plain sight, or should I say “blurry sight.” As mentioned last time, the AVP covers its lower-than-human vision angular resolution by making everything bigger and bolder (defaults, even for the small window mode setting, are pretty large).

While I’m causing controversies by showing evidence, I might as well point out that the AVP’s contrast and color uniformity are also slightly lower than the Meta Quest 3 on anything but a nearly black image. This is because the issues with AVP’s pancake optics dominate over AVP’s OLED microdisplay. This should not be a surprise. Many people have reported “glow” coming from the AVP, particularly when watching movies. That “glow” is caused by unwanted reflections in the pancake optics.

If you click on any image in this article, you can access it in full resolution as cropped from a 45-megapixel original image. The source image is on this blog’s Test Pattern Page. As if the usual practice of this blog, I will show my work below. If you disagree, please show your evidence.

Hiding the Screen Door Effect in Plain Sight with Blur

The numbers don’t lie. As I reported last time in Apple Vision Pro’s (AVP) Image Quality Issues – First Impressions, the AVP’s peak center resolution is about 44.4 pixels per degree (PPD), below 80 PPD, what Apple calls “retinal resolution,” and the pixel jaggies and screen door should be visible — if the optics were sharp. So why are so many reporting that the AVP’s resolution must be high since they don’t see the screen door effect? Well, because they are ignoring the issue of the sharpness of the optics.

Two factors affect the effective resolution: the PPD of optics and the optics’ modulation transfer function sharpness and contrast of the optics, commonly measured by the Modulation Transfer Function (MTF — see Appendix on MTF).

People do not see the screen door effect with the AVP because the display is slightly out of focus/blurry. Low pass filtering/blurring is the classic way to reduce aliasing and screen door effects. I noticed that when playing with the AVP’s optics, the optics have to be almost touching the display to be in focus. The AVP’s panel appears to be recessed by about 1 millimeter (roughly judging by my eye) beyond the best focus distance. This is just enough so that the thinner gaps between pixels are out of focus while only making the pixels slightly blurry. There are potentially other explanations for the blur, including the microlenses over the OLED panel or possibly a softening film on top of the panel. Still, the focus seems to be the most likely cause of the blurring.

Full Image Pictures from the center 46 Degrees of the FOV

I’m going to start with high-resolution pictures through the optics. You won’t be able to see any detail without clicking on them to see them at full resolution, but you may discern that the MQ3 feels sharper by looking at the progressively smaller fonts. This is true even in the center of the optics (square “34” below), even before the AVP’s foveate rendering results in a very large blur at the outside of the image (11, 21, 31, 41, 51, and 61). Later, I will show a series of crops to show the central regions next to each other in more detail.

The pictures below were taken by a Canon R5 (45 Megapixel) camera with a 16mm lens at f8. With a combination of window sizing and moving the headset, I created the same size image on the Apple Vision Pro and Meta Quest Pro to give a fair comparison (yes, it took a lot of time). A MacBook Pro M3 Pro was casting the AVP image, and the Meta Quest 3 was running the Immersed application (to get a flat image) mirroring a PC laptop. For reference, I added a picture of a 28″ LCD monitor taken from about 30″ to give approximately the same FOV as the image from a conventional 4K monitor (this monitor could resolve single pixels of four of these 1080p images, although you would have to have very good vision see them distinctly).

Medium Close-Up Comparison

Below are crops from near the center of the AVP image (left), the 28″ monitor (center), and the MQ3 image (right). The red circle on the AVP image over the number 34 is from the eye-tracking pointer being on (also used to help align and focus the camera). The blur of the AVP is more evident in the larger view.

Extreme Close-Up of AVP and MQ3

Cropping even closer to see the details (all the images above are at the same resolution) with the AVP on the top and the MQ3 on the bottom. Some things to note:

  1. Neither the AVP nor MQ3 can resolve the 1-pixel lines, even though a cheap 1080p monitor would show them distinctly.
  2. While the MQ3 has more jaggies and the screen door effect, it is noticeably sharper.
  3. Looking at the space between the circle and the 3-pixel wide lines pointed at by the red arrow, it should be noticed that the AVP has less contrast (is less black) than the MQ3.
  4. Neither the AVP nor MQ3 can resolve the 1-pixel-wide lines correctly, but the 2- and 3-pixel-wide lines, along with all the text, are significantly sharper and have higher contrast than on the AVP. Yes, the effective resolution of the MQ3 is objectively better than the AVP.
  5. Some color moiré can be seen in the MQ3 image, a color artifact due to the camera’s Bayer filter (not seen by the eye) and the relative sharpness of the MQ3 optics. The camera can “see” the MQ3’s LCD color filters through the optics.

Experiment with Slightly Blurring the Meta Quest 3

A natural question is whether the MQ3 should have made their optics slightly out of focus to hide the screen door effect. As a quick experiment, I tried a (Gaussian) blur of the MQ3’s image a little (middle image below) as an experiment. There is room to blur it while still having a higher effective resolution than the AVP. The AVP still has more pixels, and the person/elf’s image looks softer on the slightly blurred MQ3. The lines are testing for high contrast resolution (and optical reflections), and the photograph shows what happens to a lower contrast, more natural image with more pixel detail.

AVP’s Issues with High-Resolution Content

While Apple markets each display as having the same number of pixels as a 4K monitor (but differently shaped and not as wide), the resolution is reduced by multiple factors, including those listed below:

  1. The oval-shaped optics cut about 25-30% of the pixels.
  2. The outer part of the optics has poor resolution (about 1/3rd the pixels per degree of the center) and has poor color.
  3. A rectangular image must be inscribed inside the “good” part of the oval-shaped optics with a margin to support head movement. While the combined display might have a ~100-degree FOV, there is only about a 45- to 50-degree sweet spot.
  4. Any pixels in the source image must be scaled and mapped into the destination pixels. For any high-resolution content, this can cause more than a 2x (linear) loss in resolution and much worse if it aliases. For more on the scaling issues, see my articles on Apple Vision Pro (Part 5A, 5B, & 5C).
  5. As part of #4 above or in a separate process, the image must be corrected for optical distortion and color as a function of eye tracking, causing further image degradation
  6. Scintillation and wiggling of high-resolution content with any head movement.
  7. Blurring by the optics

The net of the above, and as demonstrated by the photographs through the optics shown earlier, the AVP can’t accurately display a detailed 1920×1080 (1080p) image.

AVP Lack “Information Density”

Making everything bigger, including short messages and videos, can work for low-information-density applications. If anything, the AVP demonstrates that very high resolution is less important for movies than people think (watching movies is a notoriously bad way to judge resolution).

As discussed last time, the AVP makes up the less-than-human angular resolution by making everything big to hide the issue. But making the individual elements bigger means less content can be seen simultaneously as the overall image is enlarged. But making things bigger means that the “information density” goes down, with the eyes and head having to move more to see the same amount of content and less overall content can be seen simultaneously. Consider a spreadsheet; fewer rows and columns will be in the sweet spot of a person’s vision, and less of the spreadsheet will be visible without needing to turn your head.

This blog’s article, FOV Obsession, discusses the issue of eye movement and fatigue using information from Thad Starner’s 2019 Photonic’s West AR/VR/MR presentation. The key point is that the eye does not normally want to move more than 10 degrees for an extended period. The graph below left is for a monocular display where the text does not move with the head-turning. Starner points out that a typical newspaper column is only about 6.6 degrees. It is also well known that when reading content more than ~30 degrees wide, even for a short period, people will turn their heads rather than move their eyes. Making text content bigger to make it legible will necessitate more eye and head movement to see/read the same amount of content, likely leading to fatigue (I would like to see a study of this issue).

ANSI-Like Contrast

A standard way to measure contrast is using a black-and-white checkerboard pattern, often called ANSI Contrast. It turns out that with a large checkerboard pattern, the AVP and MQ3 have very similar contrast ratios. For the picture below, I make the checkerboard bigger to fill about 70 degrees horizontally for each device’s FOV. The optical reflections inside the AVP’s optics cancel out the inherent high contrast of the OLED displays inside the AVP.

The AVP Has Worse Color Uniformity than the MQ3

You may be able to tell that the AVP has a slightly pink color in the center white squares. As I move my head around, I see the pink region move with it. Part of the AVP’s processing is used to correct color based on eye tracking. Most of the time, the AVP does an OK job, but it can’t perfectly correct for color issues with the optics, which becomes apparent in large white areas. The issues are most apparent with head and eye movement. Sometimes, by Apple’s admission, the correction can go terribly wrong if it has problems with eye tracking.

Using the same images above and increasing the color saturation in both images by the same amount makes the color issues more apparent. The MQ3 color uniformity only slightly changes in the color of the whites, but the AVP turns pink in the center and cyan on the outside.

The AVP’s “aggressive” optical design has about 1.6x the magnification of the MQ3 and, as discussed last time, has a curved quarter waveplate (QWP). Waveplates modify polarized light and are wavelength (color) and angle of light-dependent. Having repeatedly switched between the AVP and MQ3, the MQ3 has better color uniformity, particularly when taking one off and quickly putting the other on.

Conclusion and Comments

As a complete product (more on this in future articles), the AVP is superior to the Meta Quest Pro, Quest 3, or any other passthrough mixed reality headset. Still, the AVP’s effective resolution is less than the pixel differences would suggest due to the softer/blurrier optics.

While the pixel resolution is better than the Quest Pro and Quest 3, its effective resolution after the optics is worse on high-contrast images. Due to having a somewhat higher PPD, the AVP looks better than the MQP and MQ3 on “natural” lower-contrast content. The AVP image is much worse than a cheap monitor displaying high-resolution, high-contrast content. Effectively, what the AVP supports is multiple low angular resolution monitors.

And before anyone makes me out to be a Meta fanboy, please read my series of articles on the Meta Quest Pro. I’m not saying the MQ3 is better than the AVP. I am saying that the MQ3 is objectively sharper and has better color uniformity. Apple and Meta don’t get different physics, and they make different trade-offs which I am pointing out.

The AVP and any VR/MR headset will fare much better with “movie” and video content with few high-contrast edges; most “natural” content is also low in detail and pixel-to-pixel contrast (and why compression works so well with pictures and movies). I must also caution that we are still in the “wild enthusiasm stage,” where the everyday problems with technology get overlooked.

In the best case, the AVP in the center of the display gives the user a ~20/30 vision view of its direct (non-passthrough) content and worse when using passthrough (20/35 to 20/50). Certainly, some people will find the AVP useful. But it is still a technogeek toy. It will impress people the way 3-D movies did over a decade ago. As a reminder, 3-D TV peaked at 41.45 million units in 2012 before disappearing a few years later.

Making a headset display is like n-dimensional chess; more than 20 major factors must be improved, and improving one typically worsens other factors. These factors include higher resolution, wider FOV, peripheral vision and safety issues, lower power, smaller, less weight, better optics, better cameras, more cameras and sensors, and so on. And people want all these improvements while drastically reducing the cost. I think too much is being made about the cost, as the AVP is about right regarding the cost for a new technology when adjusted for inflation; I’m worried about the other 20 problems that must be fixed to have a mass-market product.

Appendix – Modulation Transfer Function (MTF)

MTF is measured by putting in a series of lines of equal width and spacing and measuring the difference between the white and black as the size and spacing of the lines change. People typically use 50% contrast critical to specify the MTF by convention. But note that contrast is defined as (Imax-Imin)/(Imax+Imin), so to achieve 50% contrast, the black level must be 1/3rd of the white level. The figure (below) shows how the response changes with the line spacing.

The MTF of the optics is reduced by both the sharpness of the optics and any internal reflections that, in turn, reduce contrast.

Spreadsheet “Breaks” The Apple Vision Pro’s (AVP) Eye-Tracking/Foveation & the First Through-the-optics Pictures

Introduction

Today’s article is just some early findings on the Apple Vision Pro (AVP). I’m working on many things related to the AVP, and it will take me a while to prepare all of them for publishing. Among the things I am doing, I am trying to capture “through the optics” pictures of the AVP, and it is unveiling both interesting information on how the AVP works and the second test pattern I tried “broke” the foveated rending of the AVP.

Having done several searches, I have not seen any “through-the-optics” pictures of the AVP yet. They may be out there, but I haven’t found them. So, I thought I would put up a couple of my test pictures to be (hopefully) the first to publish a picture through the AVP’s optics.

Eye Tracking Display Based Rendering, Maybe “Too smart for its own good”

The AVP is sometimes “too smart for its own good,” resulting in bad visual artifacts. In addition to being used for selection, the AVP’s eye-tracking varies the resolution and corrects color issues (aberrations) in the optics by pre-processing the image. This makes it tricky to photograph because the camera lens looks different to the human eye.

Today, I threw together some spreadsheets to check my ability to take pictures through the AVP optics. I started with two large Excel spreadsheets displayed using the AVP’s native Excel App. One spreadsheet used black text on a white background, which looked like the AVP was making the text and lines look “bolder/thicker” than they should look, but it didn’t act that crazy; the AVP seems to be “enhancing” (not always what you want) the spreadsheet’s readability.

But then I tried inverting everything with white text and lines on a black background, and the display started scintillating in a square box that followed the eye tracking. Fortunately, the AVP’s recording captured the effect in the video below.

I want to emphasize that it is not just the camera or the AVP’s video capture that shows the problem with the foveated rendering; I see it with my own eyes. I have provided the spreadsheets below so anyone with an AVP can verify my findings. I have only tested this with the Excel running on the AVP. The effect is most easily seen if you go into “View” in Excel” and make the view smaller with “-” magnifying glass 3 or 4 times to make the text and boxes smaller.

My First Through-the-Optics Picture Experiments

With its eye-tracking-based rendering, the AVP will be tricky to capture through the optics. The tracking behaves differently with different cameras and lenses. When setting up the camera, I can see the AVP changing colors, sometimes resulting in pictures that are colored differently than what my eye sees.

It seems pretty clear that the AVP is using “foveated,” variable resolution rendering even on still subjects like a spreadsheet. This re-rendering is based on the eyes and due to the change in the 3-D space locking (aka, SLAM) that caused the artifacts seen in the White text and lines on the BLACK spreadsheet.

Furthermore, the resolution of the displays is definitely lower than the eye’s resolution, as you can easily see the anti-aliasing “twisted rope” rippling effect if you look at the white-on-black spreadsheet. The highest rendered resolution (“foveated”) part of the image that scintillates. I discussed this issue in Apple Vision Pro (Part 5A) – Why Monitor Replacement is Ridiculous, Apple Vision Pro (Part 5B) – More on Monitor Replacement is Ridiculous, and Apple Vision Pro (Part 5C) – More on Monitor Replacement is Ridiculous.

I should point out that if not for the foveation, the whole image would scintillate. Still, the foveated rendering worsens because it creates a visible square at the boundary between the foveated area and the lower-resolution region. The “foveated rendering” makes it worse by changing the text and lines’ resolution and thickness. I would argue that a more graceful degradation would be to have the whole image rendered the same way (it is not a processing limitation to render a spreadsheet), with the whole image scintillating rather than having boundary lines where it does and does not and with the boldness changing at the boundaries as well. The key point is that the AVP’s display, while much better than almost all other VR/MR headsets, is not, as Apple puts it, “retinal resolution” (or beyond what the eye can see).

Anyway, for the record, below are a couple of through-the-optics test pictures. The first was taken with an R5 camera with a 28mm lens and “pixel shifting” to give a 400-megapixel image. Click on the crop of a very small portion of the center of that picture below to see it in full resolution.

Crop of a very small portion of the original image to show the full detail

The second image below was taken with an Olympus D mark III (Micro Four-Thirds camera) with a 17mm lens. It does not have the resolution of the R5, but the AVP’s eye tracking behaves better with this lens. This camera has a 24mp sensor, and then I used its pixel-shifting feature to capture the image at about 80 megapixels. The whole image (click to see at full resolution) is included below.

If you scroll around the full-resolution image, you can make out the pixel grid through most of the image, yet the text becomes blurrier much more quickly. Preliminarily, this seems to suggest foveated rendering. I have not had time to check yet, but I suspect the resolution falloff coincides with the squares in the white-on-black spreadsheet.

Very Small crop from the image above to show the detail

Conclusion

Designers have to be careful when it comes to applying technology. Sometimes, the same smarts that make one thing work will make others behave poorly.

The biggest part of the problem could be a bug in the AVP software or the Excel port. I’m not saying it is the end of the world, even if it is not improved. There is probably a way to “tone down” the foveated rending to reduce this problem, but I don’t think there is any way to eliminate it, given the display resolution. At the same time, the second test I tried caused it to “break/escape.” Since it happens so readily, this problem will likely show up elsewhere. Fundamentally, it comes down to the display not having a resolution as good as human vision.

❌