Reading view

There are new articles available, click to refresh the page.

Students Tackle Environmental Issues in Colombia and Türkiye



EPICS in IEEE, a service learning program for university students supported by IEEE Educational Activities, offers students opportunities to engage with engineering professionals and mentors, local organizations, and technological innovation to address community-based issues.

The following two environmentally focused projects demonstrate the value of teamwork and direct involvement with project stakeholders. One uses smart biodigesters to better manage waste in Colombia’s rural areas. The other is focused on helping Turkish olive farmers protect their trees from climate change effects by providing them with a warning system that can identify growing problems.

No time to waste in rural Colombia

Proper waste management is critical to a community’s living conditions. In rural La Vega, Colombia, the lack of an effective system has led to contaminated soil and water, an especially concerning issue because the town’s economy relies heavily on agriculture.

The Smart Biodigesters for a Better Environment in Rural Areas project brought students together to devise a solution.

Vivian Estefanía Beltrán, a Ph.D. student at the Universidad del Rosario in Bogotá, addressed the problem by building a low-cost anaerobic digester that uses an instrumentation system to break down microorganisms into biodegradable material. It reduces the amount of solid waste, and the digesters can produce biogas, which can be used to generate electricity.

“Anaerobic digestion is a natural biological process that converts organic matter into two valuable products: biogas and nutrient-rich soil amendments in the form of digestate,” Beltrán says. “As a by-product of our digester’s operation, digestate is organic matter that can’t be transferred into biogas but can be used as a soil amendment for our farmers’ crops, such as coffee.

“While it may sound easy, the process is influenced by a lot of variables. The support we’ve received from EPICS in IEEE is important because it enables us to measure these variables, such as pH levels, temperature of the reactor, and biogas composition [methane and hydrogen sulfide]. The system allows us to make informed decisions that enhance the safety, quality, and efficiency of the process for the benefit of the community.”

The project was a collaborative effort among Universidad del Rosario students, a team of engineering students from Escuela Tecnológica Instituto Técnico Central, Professor Carlos Felipe Vergara, and members of Junta de Acción Comunal (Vereda La Granja), which aims to help residents improve their community.

“It’s been a great experience to see how individuals pursuing different fields of study—from engineering to electronics and computer science—can all work and learn together on a project that will have a direct positive impact on a community.” —Vivian Estefanía Beltrán

Beltrán worked closely with eight undergraduate students and three instructors—Maria Fernanda Gómez, Andrés Pérez Gordillo (the instrumentation group leader), and Carlos Felipe Vergara-Ramirez—as well as IEEE Graduate Student Member Nicolás Castiblanco (the instrumentation group coordinator).

The team constructed and installed their anaerobic digester system in an experimental station in La Vega, a town located roughly 53 kilometers northwest of Bogotá.

“This digester is an important innovation for the residents of La Vega, as it will hopefully offer a productive way to utilize the residual biomass they produce to improve quality of life and boost the economy,” Beltrán says. Soon, she adds, the system will be expanded to incorporate high-tech sensors that automatically monitor biogas production and the digestion process.

“For our students and team members, it’s been a great experience to see how individuals pursuing different fields of study—from engineering to electronics and computer science—can all work and learn together on a project that will have a direct positive impact on a community. It enables all of us to apply our classroom skills to reality,” she says. “The funding we’ve received from EPICS in IEEE has been crucial to designing, proving, and installing the system.”

The project also aims to support the development of a circular economy, which reuses materials to enhance the community’s sustainability and self-sufficiency.

Protecting olive groves in Türkiye

Türkiye is one of the world’s leading producers of olives, but the industry has been challenged in recent years by unprecedented floods, droughts, and other destructive forces of nature resulting from climate change. To help farmers in the western part of the country monitor the health of their olive trees, a team of students from Istanbul Technical University developed an early-warning system to identify irregularities including abnormal growth.

“Almost no olives were produced last year using traditional methods, due to climate conditions and unusual weather patterns,” says Tayfun Akgül, project leader of the Smart Monitoring of Fruit Trees in Western Türkiye initiative.

“Our system will give farmers feedback from each tree so that actions can be taken in advance to improve the yield,” says Akgül, an IEEE senior member and a professor in the university’s electronics and communication engineering department.

“We’re developing deep-learning techniques to detect changes in olive trees and their fruit so that farmers and landowners can take all necessary measures to avoid a low or damaged harvest,” says project coordinator Melike Girgin, a Ph.D. student at the university and an IEEE graduate student member.

Using drones outfitted with 360-degree optical and thermal cameras, the team collects optical, thermal, and hyperspectral imaging data through aerial methods. The information is fed into a cloud-based, open-source database system.

Akgül leads the project and teaches the team skills including signal and image processing and data collection. He says regular communication with community-based stakeholders has been critical to the project’s success.

“There are several farmers in the village who have helped us direct our drone activities to the right locations,” he says. “Their involvement in the project has been instrumental in helping us refine our process for greater effectiveness.

“For students, classroom instruction is straightforward, then they take an exam at the end. But through our EPICS project, students are continuously interacting with farmers in a hands-on, practical way and can see the results of their efforts in real time.”

Looking ahead, the team is excited about expanding the project to encompass other fruits besides olives. The team also intends to apply for a travel grant from IEEE in hopes of presenting its work at a conference.

“We’re so grateful to EPICS in IEEE for this opportunity,” Girgin says. “Our project and some of the technology we required wouldn’t have been possible without the funding we received.”

A purpose-driven partnership

The IEEE Standards Association sponsored both of the proactive environmental projects.

“Technical projects play a crucial role in advancing innovation and ensuring interoperability across various industries,” says Munir Mohammed, IEEE SA senior manager of product development and market engagement. “These projects not only align with our technical standards but also drive technological progress, enhance global collaboration, and ultimately improve the quality of life for communities worldwide.”

For more information on the program or to participate in service-learning projects, visit EPICS in IEEE.

On 7 November, this article was updated from an earlier version.

U.S. Engineers’ Salaries Up in 2023



There’s good earnings news for U.S. members: Salaries are rising. Base salaries increased by about 5 percent from 2022 to 2023, according to the IEEE-USA 2024 Salary and Benefits Survey Report.

Last year’s report showed that inflation had outpaced earnings growth but that’s not the case this year.

In current dollars, the median income of U.S. engineers and other tech professionals who are IEEE members was US $174,161 last year, up about 5 percent from $169,000 in 2022, excluding overtime pay, profit sharing, and other supplemental earnings. Unemployment fell to 1.2 percent in this year’s survey, down from 1.4 percent in the previous year.

As with prior surveys, earned income is measured for the year preceding the survey’s date of record—so the 2024 survey reports income earned in 2023.

To calculate the median salary, IEEE-USA considered only respondents who were tech professionals working full time in their primary area of competence—a sample of 4,192 people.

chart visualization

Circuits and device engineers earn the most

Those specializing in circuits and devices earned the highest median income, $196,614, followed by those working in communications ($190,000) and computers/software technology ($181,000).

Specific lucrative subspecialties include broadcast technology ($226,000), image/video ($219,015), and hardware design or hardware support ($215,000).

Engineers in the energy and power engineering field earned the lowest salary: $155,000.

Higher education affects how well one is paid. On average, those with a Ph.D. earned the highest median income: $193,636. Members with a master’s degree in electrical engineering or computer engineering reported a salary of $182,500. Those with a bachelor’s degree in electrical engineering or computer engineering earned a median income of $159,000.

Earning potential also depends on geography within the United States. Respondents in IEEE Region 6 (Western U.S.) fared substantially better than those in Region 4 (Central U.S.), earning nearly $48,500 more on average. However, the report notes, the cost of living in the western part of the country is significantly higher than elsewhere.

The top earners live in California, Maryland, and Oregon, while those earning the least live in Arkansas, Nebraska, and South Carolina.

chart visualization

Academics are among the lowest earners

Full professors earned an average salary of $190,000, associate professors earned $118,000, and assistant professors earned $104,500.

Almost 38 percent of the academics surveyed are full professors, 16.6 percent are associate professors, and 11.6 percent are assistant professors. About 10 percent of respondents hold a nonteaching research appointment. Nearly half (46.8 percent) are tenured, and 10.7 percent are on a tenure track.

Gender and ethnic gaps widen

The gap between women’s and men’s salaries increased. Even considering experience levels, women earned $30,515 less than their male counterparts.

chart visualization

The median primary income is highest among Asian/Pacific Islander technical professionals, at $178,500, followed by White engineers ($176,500), Hispanic engineers ($152,178), African-American engineers ($150,000), and Native American/Alaskan Native engineers ($148,000). The salary gap between Black engineers and the average salary reported is $3,500 more than in last year’s report.

chart visualization

Asians and Pacific Islanders are the largest minority group, at 14.4 percent. Only 5 percent of members are Hispanic, 2.6 percent are African Americans, and American Indians/Alaskan Natives account for 0.9 percent of the respondents.

More job satisfaction

According to the report, overall job satisfaction is higher than at any time in the past 10 years. Members reported that their work was technically challenging and meaningful to their company. On the whole, they weren’t satisfied with advancement opportunities or their current compensation, however.

The 60-page report is available for purchase at the member price of US $125. Nonmembers pay $225.

chart visualization

Teens Gain Experience at IEEE’s TryEngineering Summer Institute



The future of engineering is bright, and it’s being shaped by the young minds at the TryEngineering Summer Institute (TESI), a program administered by IEEE Educational Activities. This year more than 300 students attended TESI to fuel their passion for engineering and prepare for higher education and careers. Sessions were held from 30 June through 2 August on the campuses of Rice University, the University of Pennsylvania, and the University of San Diego.

The program is an immersive experience designed for students ages 13 to 17. It offers hands-on projects, interactive workshops, field trips, and insights into the profession from practicing engineers. Participants get to stay on a college campus, providing them with a preview of university life.

Student turned instructor

One future innovator is Natalie Ghannad, who participated in the program as a student in 2022 and was a member of this year’s instructional team in Houston at Rice University. Ghannad is in her second year as an electrical engineering student at the University of San Francisco. University students join forces with science and engineering teachers at each TESI location to serve as instructors.

For many years, Ghannad wanted to follow in her mother’s footsteps and become a pediatric neurosurgeon. As a high school junior in Houston in 2022, however, she had a change of heart and decided to pursue engineering after participating in the TESI at Rice. She received a full scholarship from the IEEE Foundation TESI Scholarship Fund, supported by IEEE societies and councils.

“I really liked that it was hands-on,” Ghannad says. “From the get-go, we were introduced to 3D printers and laser cutters.”

The benefit of participating in the program, she says, was “having the opportunity to not just do the academic side of STEM but also to really get to play around, get your hands dirty, and figure out what you’re doing.”

“Looking back,” she adds, “there are so many parallels between what I’ve actually had to do as a college student, and having that knowledge from the Summer Institute has really been great.”

She was inspired to volunteer as a teaching assistant because, she says, “I know I definitely want to teach, have the opportunity to interact with kids, and also be part of the future of STEM.”

More than 90 students attended the program at Rice. They visited Space Center Houston, where former astronauts talked to them about the history of space exploration.

Participants also were treated to presentations by guest speakers including IEEE Senior Member Phil Bautista, the founder of Bull Creek Data, a consulting company that provides technical solutions; IEEE Senior Member Christopher Sanderson, chair of the IEEE Region 5 Houston Section; and James Burroughs, a standards manager for Siemens in Atlanta. Burroughs, who spoke at all three TESI events this year, provided insight on overcoming barriers to do the important work of an engineer.

Learning about transit systems and careers

The University of Pennsylvania, in Philadelphia, hosted the East Coast TESI event this year. Students were treated to a field trip to the Southeastern Pennsylvania Transportation Association (SEPTA), one of the largest transit systems in the country. Engineers from AECOM, a global infrastructure consulting firm with offices in Philadelphia that worked closely with SEPTA on its most recent station renovation, collaborated with IEEE to host the trip.

The benefit of participating in the program was “having the opportunity to not just do the academic side of STEM but also to really get to play around, get your hands dirty, and figure out what you’re doing.” — Natalie Ghannad

Participants also heard from guest speakers including Api Appulingam, chief development officer of the Philadelphia International Airport, who told the students the inspiring story of her career.

Guest speakers from Google and Meta

Students who attended the TESI camp at the University of San Diego visited Qualcomm. Hosted by the IEEE Region 6 director, Senior Member Kathy Herring Hayashi, they learned about cutting-edge technology and toured the Qualcomm Museum.

Students also heard from guest speakers including IEEE Member Andrew Saad, an engineer at Google; Gautam Deryanni, a silicon validation engineer at Meta; Kathleen Kramer, 2025 IEEE president and a professor of electrical engineering at the University of San Diego; as well as Burroughs.

“I enjoyed the opportunity to meet new, like-minded people and enjoy fun activities in the city, as well as get a sense of the dorm and college life,” one participant said.

Hands-on projects

In addition to field trips and guest speakers, participants at each location worked on several hands-on projects highlighting the engineering design process. In the toxic popcorn challenge, the students designed a process to safely remove harmful kernels. Students tackling the bridge challenge designed and built a span out of balsa wood and glue, then tested its strength by gradually adding weight until it failed. The glider challenge gave participants the tools and knowledge to build and test their aircraft designs.

One participant applauded the hands-on activities, saying, “All of them gave me a lot of experience and helped me have a better idea of what engineering field I want to go in. I love that we got to participate in challenges and not just listen to lectures—which can be boring.”

The students also worked on a weeklong sparking solutions challenge. Small teams identified a societal problem, such as a lack of clean water or limited mobility for senior citizens, then designed a solution to address it. On the last day of camp, they pitched their prototypes to a team of IEEE members that judged the projects based on their originality and feasibility. Each student on the winning teams at each location were awarded the programmable Mech-5 robot.

Twenty-nine scholarships were awarded with funding from the IEEE Foundation. IEEE societies that donated to the cause were the IEEE Computational Intelligence Society, the IEEE Computer Society, the IEEE Electronics Packaging Society, the IEEE Industry Applications Society, the IEEE Oceanic Engineering Society, the IEEE Power & Energy Society, the IEEE Power Electronics Society, the IEEE Signal Processing Society, and the IEEE Solid-State Circuits Society.

Wireless Innovator Gerard J. “Jerry” Foschini Remembered



IEEE Life Fellow Gerard J. “Jerry” Foschini, a Bell Labs researcher for more than 50 years, died on 17 September, 2023, at the age of 83.

Foschini made groundbreaking contributions to the field of wireless communications that improved the quality of networks and paved the way for several important IEEE standards.

In the early 1990s he helped to develop the multiple-input multiple-output (MIMO) method of using antennas to increase radio link capacity. A few years later he introduced the Bell Laboratories Layered Space-Time (BLAST) transceiver architecture, which advanced antenna systems by allowing multiple data streams to be transmitted on a single frequency.

Foschini’s work is set to be honored in Los Angeles at the Italian American Museum’s “Creative Minds” exhibit, which is designed to spotlight inventors and innovators. The exhibit is scheduled to run at the museum from next month until next October.

Decades of innovation at Bell Labs

Foschini received a bachelor’s degree in electrical engineering in 1961 from the New Jersey Institute of Technology, in Newark. He earned a master’s degree in EE in 1963 from New York University and went on to earn a Ph.D. in EE in 1967 from Stevens Institute of Technology, in Hoboken, N.J.

He began his career in 1961 as a researcher at Bell Labs, in Holmdel, N.J. (Bell Labs headquarters moved to nearby Murray Hill in 1967, but the Wireless Communications Lab remained in Holmdel.)

Gerard Foschini, as a young adult, surrounded by male colleagues at Bell Labs. Gerard Foschini [bottom row, middle] and his colleagues Larry Greenstein [top row], Len Cimini [bottom row, left], and Isam Habbab at Bell Labs in Holmdel, N.J.Darlene Foschini-Field

MIMO was one of his most well-known breakthroughs. Developed in the late 1980s, the technology became an essential element of wireless communication standards including IEEE 802.11n and IEEE 802.16 (known commercially as WiMAX). MIMO arrays can be found in many cellular and Wi-Fi systems.

In the mid-1990s Foschini helped develop BLAST. He coauthored the seminal 1998 paper “V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel” with fellow Bell Labs researchers Glenn Golden, Reinaldo A. Valenzuela, and Peter Wolniansky. A simplified version known as V-BLAST is a multiantenna communication technique that detects and repropagates the strongest signal and eliminates interference, enhancing the data quality of wireless networks.

Foschini retired in 2013.

An often-cited researcher

During his career, Foschini wrote more than 100 published works and was awarded 14 patents related to wireless communications technology. According to the Institute for Scientific Information (now part of Clarivate), Foschini was in the top 0.5 of 1 percent of publishing researchers. His works were cited more than 50,000 times.

He was elected to the U.S. National Academy of Engineering in 2009 for “contributions to the science and technology of wireless communications with multiple antennas for transmission and receiving.” He was honored with the 2008 IEEE Alexander Graham Bell Medal and the 2006 IEEE Eric E. Sumner Award.

A tribute published on the IEEE Communications Society website says:
“Although Jerry was modest and unassuming, his brilliance and deep insight became apparent as soon as one engaged him in a technical conversation. His kindness and grace permeated all his interactions. A great mentor to all his colleagues, Jerry was particularly inspiring to young researchers, eager to hear about their work and provide them with guidance and encouragement.”

A Picture Is Worth 4.6 Terabits



Clark Johnson says he has wanted to be a scientist ever since he was 3. At age 8, he got bored with a telegraph-building kit he received as a gift and repurposed it into a telephone. By age 12, he set his sights on studying physics because he wanted to understand how things worked at the most basic level.

“I thought, mistakenly at the time, that physicists were attuned to the left ear of God,” Johnson says.

Clark Johnson


Employer

Wave Domain

Title

CFO

Member grade

Life Fellow

After graduating at age 19 with a bachelor’s degree in physics in 1950 from the University of Minnesota Twin Cities, he was planning to go to graduate school when he got a call from the head of the physics section at 3M’s R&D laboratory with a job offer. Tempted by the promise of doing things with his own hands, Johnson accepted the role of physicist at the company’s facility in St. Paul, Minn. Thus began his more than seven-decade-long career as an electrical engineer, inventor, and entrepreneur—which continues to this day.

Johnson, an IEEE Life Fellow, is an active member of the IEEE Magnetics Society and served as its 1983–1984 president.

He was on the science committee of the U.S. House of Representatives, and then was recruited by the Advanced Research Projects Agency (ARPA) and assigned to assist in MIT’s Research Program on Communications Policy, where he contributed to the development of HDTV.

He went on to help found Wave Domain in Monson, Mass. Johnson and his Wave Domain collaborators have been granted six patents for their latest invention, a standing-wave storage (SWS) system that houses archival data in a low-energy-use, tamper-proof way using antiquated photography technology.

3M, HDTV, and a career full of color

3M turned out to be fertile ground for Johnson’s creativity.

“You could spend 15 percent of your time working on things you liked,” he says. “The president of the company believed that new ideas sort of sprung out of nothing, and if you poked around, you might come across something that could be useful.”

Johnson’s poking around led him to contribute to developing an audio tape cartridge and Scotchlite, the reflective film seen on roads, signs, and more.

In 1989 he was tapped to be an IEEE Congressional Fellow. He chose to work with Rep. George Brown Jr., a Democrat representing the 42nd district in central California. Brown was a ranking member of the House committee on science, space, and technology, which oversees almost all non-defense and non-health related research.

“It was probably the most exciting year of my entire life,” Johnson says.

While on the science committee, he met Richard Jay Solomon, who was associate director of MIT’s Research Program on Communications Policy, testifying for the committee on video and telecom issues. Solomon’s background is diverse. He studied physics and electrical engineering in the early 1960s at Brooklyn Polytechnic and general science at New York University. Before becoming a research associate at MIT in 1969, he held a variety of positions. He ran a magazine about scientific photography, and he founded a business that provided consulting on urban planning and transportation. He authored four textbooks on transportation planning, three of which were published by the American Society of Civil Engineers. At the magazine, Solomon gained insights into arcane, long-forgotten 19th-century photographic processes that turned out to be useful in future inventions.

a man standing at the end of a brown and orange train car Johnson and Solomon bonded over their shared interest in trains. Johnson’s refurbished Pullman car has traveled some 850,000 miles across the continental U.S.Clark Johnson

Johnson and Solomon clicked over a shared interest in trains. At the time they met, Johnson owned a railway car that was parked in the District of Columbia’s Union Station, and he used it to move throughout North America, traveling some 850,000 miles before selling the car in 2019. Johnson and Solomon shared many trips aboard the refurbished Pullman car.

Now they are collaborators on a new method to store big data in a tamperproof, zero-energy-cost medium.

Conventional storage devices such as solid-state drives and hard disks take energy to maintain, and they might degrade over time, but Johnson says the technique he, Solomon, and collaborators developed requires virtually no energy and can remain intact for centuries under most conditions.

Long before collaborating on their latest project, Johnson and Solomon teamed up on another high-profile endeavor: the development of HDTV. The project arose through their work on the congressional science committee.

In the late 1980s, engineers in Japan were working on developing an analog high-definition television system.

“My boss on the science committee said, ‘We really can’t let the Japanese do this. There’s all this digital technology and digital computers. We’ve got to do this digitally,’” Johnson says.

That spawned a collaborative project funded by NASA and ARPA (the predecessor of modern-day DARPA). After Johnson’s tenure on the science committee ended, he and Solomon joined a team at MIT that participated in the collaboration. As they developed what would become the dominant TV technology, Johnson and Solomon became experts in optics. Working with Polaroid, IBM, and Philips in 1992, the team demonstrated the world’s first digital, progressive-scanned, high-definition camera at the annual National Association of Broadcasters conference.

A serendipitous discovery

Around 2000, Clark and Solomon, along with a new colleague, Eric Rosenthal, began working as independent consultants to NASA and the U.S. Department of Defense. Rosenthal had been a vice president of research and development at Walt Disney Imagineering and general manager of audiovisual systems engineering at ABC television prior to joining forces with Clark and Solomon.

While working on one DARPA-funded project, Solomon stumbled upon a page in a century-old optics textbook that caught his eye. It described a method developed by noted physicist Gabriel Lippmann for producing color photographs. Instead of using film or dyes, Lippmann created photos by using a glass plate coated with a specially formulated silver halide emulsion.

When exposed to a bright, sunlit scene, the full spectrum of light reflected off a mercury-based mirror coating on the back of the glass. It created standing waves inside the emulsion layer of the colors detected. The silver grains in the brightest parts of the standing wave became oxidized, as if remembering the precise colors they saw. (It was in stark contrast to traditional color photographs and television, which store only red, green, and blue parts of the spectrum.) Then, chemical processing turned the oxidized silver halide grains black, leaving the light waves imprinted in the medium in a way that is nearly impossible to tamper with. Lippmann received the 1908 Nobel Prize in Physics for his work.

Lippmann’s photography technique did not garner commercial success, because there was no practical way to duplicate the images or print them. And at the time, the emulsions needed the light to be extremely bright to be properly imprinted in the medium.

Nevertheless, Solomon was impressed with the durability of the resulting image. He explained the process to his colleagues, who recognized the possibility of using the technique to store information for archival purposes. Johnson saw Lippmann’s old photographs at the Museum for Photography, in Lausanne, Switzerland, where he noticed that the colors appeared clear and intense despite being more than a century old.

The silver halide method stuck with Solomon, and in 2013 he and Johnson returned to Lippmann’s emulsion photography technique.

“We got to talking about how we could take all this information we knew about color and use it for something,” Johnson says.

Data in space and on land

While Rosenthal was visiting the International Space Station headquarters in Huntsville, Ala., in 2013, a top scientist said, “‘The data stored on the station gets erased every 24 hours by cosmic rays,’” Rosenthal recalls. “‘And we have to keep rewriting the data over and over and over again.’” Cosmic rays and solar flares can damage electronic components, causing errors or outright erasures on hard disks and other traditional data storage systems.

Rosenthal, Johnson, and Solomon knew that properly processed silver halide photographs would be immune to such hazards, including electromagnetic pulses from nuclear explosions. The team examined Lippmann’s photographic emulsion anew.

Solomon’s son, Brian Solomon, a professional photographer and a specialist in making photographic emulsions, also was concerned about the durability of conventional dye-based color photographs, which tend to start fading after a few decades.

The team came up with an intriguing idea: Given how durable Lippmann’s photographs appeared to be, what if they could use a similar technique—not for making analog images but for storing digital data? Thus began their newest engineering endeavor: changing how archival data—data that doesn’t need to be overwritten but simply preserved and read occasionally—is stored.

black text with red and green wavy lines and black dots in a gray box with another gray box next to it The standing wave storage technique works by shining bright LEDs onto a specially formulated emulsion of silver grains in gelatin. The light reflects off the substrate layer (which could be air), and forms standing waves in the emulsion. Standing waves oxidize the silver grains at their peaks, and a chemical process turns the oxidized silver grains black, imprinting the pattern of colors into the medium. Wave Domain

Conventionally stored data sometimes is protected by making multiple copies or continuously rewriting it, Johnson says. The techniques require energy, though, and can be labor-intensive.

The amount of data that needs to be stored on land is also growing by leaps and bounds. The market for data centers and other artificial intelligence infrastructure is growing at an annual rate of 44 percent, according to Data Bridge Market Research. Commonly used hard drives and solid-state drives consume some power, even when they are not in use. The drives’ standby power consumption varies between 0.05 and 2.5 watts per drive. And data centers contain an enormous number of drives requiring tremendous amounts of electricity to keep running.

Johnson estimates that about 25 percent of the data held in today’s data centers is archival in nature, meaning it will not need to be overwritten.

The ‘write once, read forever’ technology

The technology Johnson, Solomon, and their collaborators have developed promises to overcome the energy requirements and vulnerabilities of traditional data storage for archival applications.

The design builds off of Lippmann’s idea. Instead of taking an analog photograph, the team divided the medium into pixels. With the help of emulsion specialist Yves Gentet, they worked to improve Lippmann’s emulsion chemistry, making it more sensitive and capable of storing multiple wavelengths at each pixel location. The final emulsion is a combination of silver halide and extremely hardened gelatin. Their technique now can store up to four distinct narrow-band, superimposed colors in each pixel.

black text with squares with red, green, blue, yellow and pink in them with another large rectangle below with a spectrum of the rainbow in colors The standing wave storage technique can store up to four colors out of a possible 32 at each pixel location. This adds up to an astounding storage capacity of 4.6 terabits (or roughly 300 movies) in the area of a single photograph. Wave Domain

“The textbooks say that’s impossible,” Solomon says, “but we did it, so the textbooks are wrong.”

For each pixel, they can choose four colors out of a possible 32 to store.

That amounts to more than 40,000 possibilities. Thus, the technique can store more than 40,000 bits (although the format need not be binary) in each 10-square-micrometer pixel, or 4.6 terabits in a 10.16 centimeter by 12.7 cm modified Lippmann plate. That’s more than 300 movies’ worth of data stored in a single picture.

To write on the SWS medium, the plate—coated with a thin layer of the specially formulated emulsion—is exposed to light from an array of powerful color LEDs.

That way, the entire plate is written simultaneously, greatly reducing the writing time per pixel.

The plate then gets developed through a chemical process that blackens the exposed silver grains, memorizing the waves of color it was exposed to.

Finally, a small charged-couplet-device camera array, like those used in cellphones, reads out the information. The readout occurs for the entire plate at once, so the readout rate, like the writing rate, is fast.

“The data that we read is coming off the plate at such a high bandwidth,” Solomon says. “There is no computer on the planet that can absorb it without some buffering.”

The entire memory cell is a sandwich of the LED array, the photosensitive plate, and the CCD. All the elements use off-the-shelf parts.

“We took a long time to figure out how to make this in a very inexpensive, reproducible, quick way,” Johnson says. “The idea is to use readily available parts.” The entire storage medium, along with its read/write infrastructure, is relatively inexpensive and portable.

To test the durability of their storage method, the team sent their collaborators at NASA some 150 samples of their SWS devices to be hung by astronauts outside the International Space Station for nine months in 2019. They then tested the integrity of the stored data after the SWS plates were returned from space, compared with another 150 plates stored in Rosenthal’s lab on the ground.

“There was absolutely zero degradation from nine months of exposure to cosmic rays,” Solomon says. Meanwhile, the plates on Rosenthal’s desk were crawling with bacteria, while the ISS plates were sterile. Silver is a known bactericide, though, so the colors were immune, Solomon says.

Their most recent patent, granted earlier this year, describes a method of storing data that requires no power to maintain when not actively reading or writing data. Team members say the technique is incorruptible: It is immune to moisture, solar flares, cosmic rays, and other kinds of radiation. So, they argue, it can be used both in space and on land as a durable, low-cost archival data solution.

Passing on the torch

The new invention has massive potential applications. In addition to data centers and space applications, Johnson says, scientific enterprises such as the Rubin Observatory being built in Chile, will produce massive amounts of archival data that could benefit from SWS technology.

“It’s all reference data, and it’s an extraordinary amount of data that’s being generated every week that needs to be kept forever,” Johnson says.

Johnson says, however, that he and his team will not be the ones to bring the technology to market: “I’m 94 years old, and my two partners are in their 70s and 80s. We’re not about to start a company.”

He is ready to pass on the torch. The team is seeking a new chief executive to head up Wave Domain, which they hope will continue the development of SWS and bring it to mass adoption.

Johnson says he has learned that people rarely know which new technologies will eventually have the most impact. Perhaps, though few people are aware of it now, storing big data using old photographic technology will become an unexpected success.

U.S. Engineers’ Salaries Up in 2023



There’s good earnings news for U.S. members: Salaries are rising. Base salaries increased by about 5 percent from 2022 to 2023, according to the IEEE-USA 2024 Salary and Benefits Survey Report.

Last year’s report showed that inflation had outpaced earnings growth but that’s not the case this year.

In current dollars, the median income of U.S. engineers and other tech professionals who are IEEE members was US $174,161 last year, up about 5 percent from $169,000 in 2022, excluding overtime pay, profit sharing, and other supplemental earnings. Unemployment fell to 1.2 percent in this year’s survey, down from 1.4 percent in the previous year.

As with prior surveys, earned income is measured for the year preceding the survey’s date of record—so the 2024 survey reports income earned in 2023.

To calculate the median salary, IEEE-USA considered only respondents who were tech professionals working full time in their primary area of competence—a sample of 4,192 people.

chart visualization

Circuits and device engineers earn the most

Those specializing in circuits and devices earned the highest median income, $196,614, followed by those working in communications ($190,000) and computers/software technology ($181,000).

Specific lucrative subspecialties include broadcast technology ($226,000), image/video ($219,015), and hardware design or hardware support ($215,000).

Engineers in the energy and power engineering field earned the lowest salary: $155,000.

Higher education affects how well one is paid. On average, those with a Ph.D. earned the highest median income: $193,636. Members with a master’s degree in electrical engineering or computer engineering reported a salary of $182,500. Those with a bachelor’s degree in electrical engineering or computer engineering earned a median income of $159,000.

Earning potential also depends on geography within the United States. Respondents in IEEE Region 6 (Western U.S.) fared substantially better than those in Region 4 (Central U.S.), earning nearly $48,500 more on average. However, the report notes, the cost of living in the western part of the country is significantly higher than elsewhere.

The top earners live in California, Maryland, and Oregon, while those earning the least live in Arkansas, Nebraska, and South Carolina.

chart visualization

Academics are among the lowest earners

Full professors earned an average salary of $190,000, associate professors earned $118,000, and assistant professors earned $104,500.

Almost 38 percent of the academics surveyed are full professors, 16.6 percent are associate professors, and 11.6 percent are assistant professors. About 10 percent of respondents hold a nonteaching research appointment. Nearly half (46.8 percent) are tenured, and 10.7 percent are on a tenure track.

Gender and ethnic gaps widen

The gap between women’s and men’s salaries increased. Even considering experience levels, women earned $30,515 less than their male counterparts.

chart visualization

The median primary income is highest among Asian/Pacific Islander technical professionals, at $178,500, followed by White engineers ($176,500), Hispanic engineers ($152,178), African-American engineers ($150,000), and Native American/Alaskan Native engineers ($148,000). The salary gap between Black engineers and the average salary reported is $3,500 more than in last year’s report.

chart visualization

Asians and Pacific Islanders are the largest minority group, at 14.4 percent. Only 5 percent of members are Hispanic, 2.6 percent are African Americans, and American Indians/Alaskan Natives account for 0.9 percent of the respondents.

More job satisfaction

According to the report, overall job satisfaction is higher than at any time in the past 10 years. Members reported that their work was technically challenging and meaningful to their company. On the whole, they weren’t satisfied with advancement opportunities or their current compensation, however.

The 60-page report is available for purchase at the member price of US $125. Nonmembers pay $225.

chart visualization

How IEEE Ensures Quality In Engineering Education



For IEEE, the accreditation of engineering programs is important. Accreditation is vital to the future of the profession, ensuring that the graduates are prepared to practice and establishing a link to a sustainable future with a talented pool of engineering and technology professionals.

IEEE’s involvement in the accreditation process ensures that students who graduate from approved programs have demonstrated the skills and abilities established by the criteria.

Technical professional associations such as IEEE are involved because it gives them a voice in the educational process for programs in their fields of interest. Accredited programs demonstrate to both prospective students and employers that the educational institutions meet a quality standard. For graduating students, it verifies that they’ve attended a quality program, and it supports their entry into the profession.

How does program accreditation work?

Accreditation is not a grade, score, or ranking. Programs are evaluated against a set of approved criteria to ensure that certain educational objectives are met.

IEEE plays a significant role in establishing the criteria and evaluating programs. The goal is to ensure the accredited educational programs have attained a level of performance in areas that meet or exceed minimum standards developed by experts in the field.

“My experiences have been very rewarding, and I hope to continue to have a positive impact on the quality of engineering education.” —Sarah Rajala

An accrediting body establishes the criteria. ABET, formerly known as the Accreditation Board for Engineering and Technology, is the body deciding the criteria in the United States. It is a nonprofit, nongovernmental organization that evaluates programs in the applied sciences, engineering, computing, and technology. IEEE is a founding member of the organization.

IEEE provides ABET with expert volunteers who serve as program evaluators, or PEVs. They visit institutions to review their programs using the approved criteria to discern whether the schools meet the standard. IEEE does not directly grant accreditation to an institution; ABET does. There are currently 35 technical professional associations that are member societies, including ASME, ASCE, and ASEE. Representatives from IEEE and other societies helped develop the criteria used to conduct the evaluations.

Recognizing the importance of program accreditation, many countries have established bodies and other processes to develop educational criteria. ABET also serves as the accrediting body for a growing number of programs outside the United States.

Become an evaluator

IEEE currently has more than 300 members serving as program evaluators but more are always needed. Becoming an evaluator provides a professional development opportunity, furthers IEEE’s mission, and supports the profession.

“My experiences have been very rewarding, and I hope to continue to have a positive impact on the quality of engineering education,” says IEEE Member Sarah Rajala, who is the 2024–2025 ABET president. A professor emeritus at Iowa State University, in Ames, Rajala has served as a program evaluator and assignment coordinator for IEEE’s Committee on Engineering Accreditation Activities.

IEEE accepts evaluator applications from its members in engineering and engineering technology. Each area has specific requirements, and applicants must choose one as their field of expertise. To learn more, go to the Program Evaluator Opportunities page on IEEE’s website.

Other bodies involved in engineering accreditation also need evaluators.

Mary Ellen Randall Is 2025 IEEE President-Elect



IEEE Fellow Mary Ellen Randall has been elected as the 2025 IEEE president-elect. She will begin serving as president on 1 January 2026.

Randall, who was nominated by the IEEE Board of Directors, received 16,389 votes in the election. Fellow S.K. Ramesh received 10,647 votes and Fellow John P. Verboncoeur received 9,412.

Randall’s Pledge to Members


  1. Institute innovative products and services to ensure our mutually successful future.
  2. Engage stakeholders (members, partners, and communities) to unite on a comprehensive vision.
  3. Expand technology advancement and adoption throughout the world.
  4. Execute with excellence, ethics, and financial responsibility.
  5. Lead by example with enthusiasm and integrity.

At press time, the results were unofficial until the IEEE Board of Directors accepts the IEEE Teller’s Committee report in November.

Randall founded Ascot Technologies in 2000 in Cary, N.C. Ascot develops enterprise applications using mobile data delivery technologies. She serves as the award-winning company’s CEO.

Before launching Ascot, she worked for IBM, where she held several technical and managerial positions in hardware and software development, digital video chips, and test design automation. She routinely managed international projects.

Randall has served as IEEE treasurer, director of IEEE Region 3, chair of IEEE Women in Engineering, and vice president of IEEE Member and Geographic Activities.

In 2016 she founded the IEEE MOVE (Mobile Outreach using Volunteer Engagement) program to assist with disaster relief efforts and for science, technology, engineering, and math educational purposes.

The IEEE-Eta Kappa Nu honor society member has received several honors including the 2020 IEEE Haraden Pratt Award, which recognizes outstanding volunteer service to IEEE.

She was named a top businesswoman in North Carolina’s Research Triangle Park area, and she made the 2003 Business Leader Impact 100 list.

To find out who was chosen as IEEE-USA president-elect, IEEE Technical Activities vice president-elect, and more, read the full annual election results.

Tips for Improving Workplace Communication Skills



This article is part of our exclusive career advice series in partnership with the IEEE Technology and Engineering Management Society.

Poor communication causes problems, delays, and failures in teams and organizations. As engineers who want to communicate what we are working on and why it matters, we need to work on getting better at it.

That might seem obvious, but how we communicate often depends on whom we communicate with. The method of communication, as well as the content, differ if you’re talking with an executive, a peer, or someone you lead.

As a career expert, I can help you better communicate at different levels of your organization, whether by email, in person, on the phone, or virtually.

This is not a “one size fits all” model. Individuals at all levels have varying preferences for style, cadence, length, and mode. It’s a good practice to be sensitive to such differences.

Communicating “up” to leaders

Let’s start with communicating with leaders and more senior managers within an organization.

First, consider the purpose of communicating with them, such as:

  • Making them aware of your work for strategic decisions.
  • The impact of your project on teams.
  • Reporting progress on a strategic initiative.

Such leaders don’t want all the details. They often don’t have the time, or they might not understand the specifics, especially if the topic is deeply technical.

Context and impact, however, are important to them. How does what you’re sharing fit into the company as a whole? Will it affect other developments? What does it mean for your team and others moving forward?

Give the leaders what they need. Be brief and cogent.

For example, I had a coaching client who was working on a large initiative to shift technology platforms used for the storing and distribution of their digital products. It was a big deal for the company, as everything else they delivered went back to the platform. When speaking to upper management, they mostly had to focus on the timeline, budget, and reliability/performance expectations as they went through the project so that the leadership team could make decisions based on that information.

Your role is to help the client make informed decisions. You can be proactive in communicating with senior leaders when appropriate, and you should ensure you respond to questions and requests as soon and clearly as possible.

What and how you communicate will shape the leaders’ perception of you, with potential implications on your performance reviews and future opportunities.

Communicating across levels

At this level, you frequently communicate with peers, stakeholders, clients, or other collaborators.

Beware of the curse of knowledge. If you believe you know more than they do, it can be difficult to look at things from their perspective and help them understand because you already have things mapped out in your head. Communicating with peers isn’t just about sharing information. You can, and should, seek information and respond to requests and perspectives that others have shared. The process of give and take is important in a collegial environment.

Consider what you need to communicate:

  • What does the client need to know to make good decisions?
  • What input do you need to effectively collaborate?
  • Is there a background or context the client needs to understand?
  • Do you have the right people involved?

Going back to the example of my client above, when he was working with his peers he mostly focused on communicating and solving around interactions/dependencies. It allows the group members to make sure they all could deliver together and remove critical roadblocks to the progress of other teams.

Working collaboratively allows you to get the best out of everyone, rather than making unilateral decisions and moving forward on your own. Engaging team members in a constructive and supportive way will help you be a better colleague and partner, with tangible and intangible benefits.

Communicating with those you lead

Communicating “down” does not mean talking down to anyone. It’s just a way of communicating with those you lead, formally or informally. They don’t want to be left in the dark. They need to have context and understanding of not just what they are doing but also why.

When communicating with your staff:

  • Help them see the big picture and understand how their actions contribute to larger goals and initiatives.
  • Share context and the reasoning behind decisions. Transparency is important to avoid false stories and incorrect assumptions. That said, there will be occasions when you won’t be able to give the staff the full picture.
  • Get their input frequently; don’t just give orders. Your staff members are crucial parts of the organization, and they will have useful input and ideas. Listen to them and help them feel heard and valued.

When my client was interfacing with his team, he helped his colleagues see why they were engaged in the technology transition project, what each person needed to do, and when the job needed to be completed. It helped everyone feel connected to the purpose of their work, and it created a team commitment around deliverables.

Effective communication at this level is one of the most important ways to boost morale, cultivate respect, and influence organizational culture.

Take intentional action

Look at each of your conversations at work and think about what communication level and style is needed for each situation. Perhaps it’s giving a presentation to leaders or taking on a project that will have you collaborating with new team members. As you move through the experience, spend some time reflecting on what is working. Are you growing your relationships with others? What could be improved?

Do something outside your comfort zone to help you practice your communication skills.

Whatever it is, make sure it stretches your skills.

IEEE Dominates U.S. Tech Patent Citations



A new study that examined filings with the U.S. Patent and Trademark Office by the 50 top-patenting companies cited IEEE nearly three times more than any other technical-literature publisher including ACM, Elsevier, and Springer.

The organizations with the highest number of patents granted—including Amazon, Apple, IBM, Microsoft, Qualcomm, Samsung, and TSMC—referenced IEEE journals, standards, and conference proceedings in their patents more than 682,000 times during the past 20 years, according to the “Analysis of Patent Referencing to IEEE Papers, Conferences, and Standards 2004–2023” report. Prepared by intellectual property evaluation company 1790 Analytics, the report was released in June.

When broken down by technical discipline, IEEE is the most-referenced publisher in the following categories: artificial intelligence, blockchain technology, computer hardware, software, cybersecurity, the IoT, power systems, semiconductors, renewable energy, and telecommunications.

“Not only do IEEE publications frequently provide the science base for new inventions, inventions that build upon IEEE publications are more likely to be valuable in the future than inventions that do not build upon IEEE.”

Patenting AI and machine learning technologies has increased tenfold in the past 10 years, but IEEE has been able to keep pace, according to the study. More than 30 percent of AI-related patents reference IEEE publications.

The report notes that in emerging markets such as blockchain, cybersecurity, and virtual and augmented reality, IEEE receives the most references.

In the robotics and intelligent manufacturing category, more than 35 percent of patent references are to IEEE literature.

A bar chart showing IEEE is cited nearly three times more than several publishers, including their closest competitor (Elsevier). This chart shows that IEEE is cited nearly three times more than any other technical-literature publisher.1790 Analytics LLC

At 30 percent, the organization also leads in citations for patents on broadcasting technologies. IEEE registered more than twice the broadcasting citations of the nearest competitor.

For autonomous vehicles, IEEE is cited 10 times more than the next publisher.

Other areas where IEEE leads in citations include measuring, testing, and control as well as transmission.

The study also found that patents referencing IEEE papers are cited more often.

“This was shown to be true for each of the 20 technology categories we examined,” the report concludes. “This suggests that not only do IEEE publications frequently provide the science base for new inventions but that inventions that build upon IEEE publications are more likely to be valuable in the future than inventions that do not build upon IEEE.”

To download the full report or for more information, visit this website.

Happy IEEE Day!



Happy IEEE Day!

IEEE Day commemorates the first gathering of IEEE members to share their technical ideas in 1884.

First celebrated in 2009, IEEE Day marks its 15th anniversary this year.

Worldwide celebrations demonstrate the ways thousands of IEEE members in local communities join together to collaborate on ideas that leverage technology for a better tomorrow.


Celebrate IEEE Day with colleagues from IEEE Sections, Student Branches, Affinity groups, and Society Chapters. Events happen both virtually and in person all around the world.

Join the celebration around the world!

Every year, IEEE members from IEEE Sections, Student Branches, Affinity groups, and Society Chapters join hands to celebrate IEEE Day. Events happen both virtually and in person. IEEE Day celebrates the first time in history when engineers worldwide gathered to share their technical ideas in 1884.

View events→

Special Activities & Offers for Members

Check out our special offers and activities for IEEE members and future members. And share these with your friends and colleagues.

View offers→

Compete in contests and win prizes!

Have some fun and compete in the photo and video contests. Get your phone and camera ready when you attend one of the events. This year we will have both Photo and Video Contests. You can submit your entries in STEM, technical, humanitarian and social categories.

View contests→

Leading Educator Weighs in on University DEI Program Cuts



Many U.S. university students returning to campus this month will find their school no longer has a diversity, equity, and inclusion program. More than 200 universities in 30 states so far this year have eliminated, cut back, or changed their DEI efforts, according to an article in The Chronicle of Higher Education.

It is happening at mostly publicly funded universities, because state legislators and governors are enacting laws that prohibit or defund DEI programs. They’re also cutting budgets and sometimes implementing other measures that restrict diversity efforts. Some colleges have closed their DEI programs altogether to avoid political pressure.

The Institute asked Andrea J. Goldsmith, a top educator and longtime proponent of diversity efforts within the engineering field and society, to weigh in.

Goldsmith shared her personal opinion about DEI with The Institute, not as Princeton’s dean of engineering and applied sciences. A wireless communications pioneer, she is an IEEE Fellow who launched the IEEE Board of Directors Diversity and Inclusion Committee in 2019 and once served as its chair.

She received this year’s IEEE Mulligan Education Medal for educating, mentoring, and inspiring generations of students, and for authoring pioneering textbooks in advanced digital communications.

“For the longest time,” Goldsmith says, “there was so much positive momentum toward improving diversity and inclusion. And now there’s a backlash, which is really unfortunate, but it’s not everywhere.” She says she is proud of her university’s president, who has been vocal that diversity is about excellence and that Princeton is better because its students and faculty are diverse.

In the interview, Goldsmith spoke about why she thinks the topic has become so controversial, what measures universities can take to ensure their students have a sense of belonging, and what can be done to retain female engineers—a group that has been underrepresented in the field.

The Institute: What do you think is behind the movement to dissolve DEI programs?

Goldsmith: That’s a very complex question, and I certainly don’t have the answer.

It has become a politically charged issue because there’s a notion that DEI programs are really about quotas or advancing people who are not deserving of the positions they have been given. Part of the backlash also was spurred by the Oct. 7 attack on Israel, the war in Gaza, and the protests. One notion is that Jewish students are also a minority that needs protection, and why is it that DEI programs are only focused on certain segments of the population as opposed to diversity and inclusion for everyone, for people with all different perspectives, and those who are victims or subject to explicit bias, implicit bias, or discrimination? I think that these are legitimate concerns, and that programs around diversity and inclusion should be addressing them.

The goal of diversity and inclusion is that everybody should be able to participate and reach their full potential. That should go for every profession and, in particular, every segment of the engineering community.

Also in the middle of this backlash is the U.S. Supreme Court’s 2023 decision that ended race-conscious affirmative action in college admissions—which means that universities cannot take diversity into account explicitly in their admission of students. The decision in and of itself only affects undergraduate admissions, but it has raised concerns about broadening the decision to faculty hiring or for other kinds of programs that promote diversity and inclusion within universities and private companies.

I think the Supreme Court’s decision, along with the political polarization and the recent protests at universities, have all been pieces of a puzzle that have come together to paint all DEI programs with a broad brush of not being about excellence and lowering barriers but really being about promoting certain groups of people at the expense of others.

How might the elimination of DEI programs impact the engineering profession specifically?

Goldsmith: I think it depends on what it means to eliminate DEI programs. Programs to promote the diversity of ideas and perspectives in engineering are essential for the success of the profession. As an optimist, I believe we should continue to have programs that ensure our profession can bring in people with diverse perspectives and experiences.

Does that mean that every DEI program in engineering companies and universities needs to evolve or change? Not necessarily. Maybe some programs do because they aren’t necessarily achieving the goal of ensuring that diverse people can thrive.

“My work in the profession of engineering to enhance diversity and inclusion has really been about excellence for the profession.”

We need to be mindful of the concerns that have been raised about DEI programs. I don’t think they are completely unfounded.

If we do the easy thing—which is to just eliminate the programs without replacing them with something else or evolving them—then it will hurt the engineering profession.

The metrics being used to assess whether these programs are achieving their goals need to be reviewed. If they are not, the programs need to be improved. If we do that, I think DEI programs will continue to positively impact the engineering profession.

For universities that have cut or reduced their programs, what are some other ways to make sure all students have a sense of belonging?

Goldsmith: I would look at what other initiatives could be started that would have a different name but still have the goal of ensuring that students have a sense of belonging.

Long before DEI programs, there were other initiatives within universities that helped students figure out their place within the school, initiated them into what it means to be a member of the community, and created a sense of belonging through various activities. These include prefreshman and freshman orientation programs, student groups and organizations, student-led courses (with or without credit), eating clubs, fraternities, and sororities, to name just a few. I am referring here to any program within a university that creates a sense of community for those who participate—which is a pretty broad category of programs.

These continue, but they aren’t called DEI programs. They’ve been around for decades, if not since the university system was founded.

How can universities and companies ensure that all people have a good experience in school and the workplace?

Goldsmith: This year has been a huge challenge for universities, with protests, sit-ins, arrests, and violence.

One of the things I said in my opening remarks to freshmen at the start of this semester is that you will learn more from people around you who have different viewpoints and perspectives than you will from people who think like you. And that engaging with people who disagree with you in a respectful and scholarly way and being open to potentially changing your perspective will not only create a better community of scholars but also better prepare you for postgraduation life, where you may be interacting with a boss, coworkers, family, and friends who don’t agree with you.

Finding ways to engage with people who don’t agree with you is essential for engaging with the world in a positive way. I know we don’t think about that as much in engineering because we’re going about building our technologies, doing our equations, or developing our programs. But so much of engineering is collaboration and understanding other people, whether it’s your customers, your boss, or your collaborators.

I would argue everyone is diverse. There’s no such thing as a nondiverse person, because no two people have the exact same set of experiences. Figuring out how to engage with people who are different is essential for success in college, grad school, your career, and your life.

I think it’s a bit different in companies, because you can fire someone who does a sit-in in the boss’s office. You can’t do that in universities. But I think workplaces also need to create an environment where diverse people can engage with each other beyond just what they’re working on in a way that’s respectful and intellectual.

Reports show that half of female engineers leave the high-tech industry because they have a poor work experience. Why is that, and what can be done to retain women?

Goldsmith: That is one of the harder questions facing the engineering profession. The challenges that women face are implicit, including sometimes explicit bias. In extreme cases, there are sexual and other kinds of harassment, and bullying. These egregious behaviors have decreased some. The Me Too movement raised a lot of awareness, but [poor behavior] still is far more prevalent than we want it to be. It’s very difficult for women who have experienced that kind of egregious and illegal behavior to speak up. For example, if it’s their Ph.D. advisor, what does that mean if they speak up? Do they lose their funding? Do they lose all the research they’ve done? This powerful person can bad-mouth them for job applications and potential future opportunities.

So, it’s very difficult to curb these behaviors. However, there has been a lot of awareness raised, and universities and companies have put protections in place against them.

Then there’s implicit bias, where a qualified woman is passed over for a promotion, or women are asked to take meeting notes but not the men. Or a woman leader gets a bad performance review because she doesn’t take no for an answer, is too blunt, or too pushy. All these are things that male leaders are actually lauded for.

There is data on the barriers and challenges that women face and what universities and employers can do to mitigate them. These are the experiences that hurt women’s morale and upward mobility and, ultimately, make them leave the profession.

One of the most important things for a woman to be successful in this profession is to have mentors and supporters. So it is important to make sure that women engineers are assigned mentors at every stage, from student to senior faculty or engineer and everything in between, to help them understand the challenges they face and how to deal with them, as well as to promote and support them.

I also think having leaders in universities and companies recognize and articulate the importance of diversity helps set the tone from the top down and tends to mitigate some of the bias and implicit bias in people lower in the organization.

I think the backlash against DEI is going to make it harder for leaders to articulate the value of diversity, and to put in place some of the best practices around ensuring that diverse people are considered for positions and reach their full potential.

We have definitely taken a step backward in the past year on the understanding that diversity is about excellence and implementing best practices that we know work to mitigate the challenges that diverse people face. But that just means we need to redouble our efforts.

Although this isn’t the best time to be optimistic about diversity in engineering, if we take the long view, I think that things are certainly better than they were 20 or 30 years ago. And I think 20 or 30 years from now they’ll be even better.

Leading Educator Weighs in on University DEI Program Cuts



Many U.S. university students returning to campus this month will find their school no longer has a diversity, equity, and inclusion program. More than 200 universities in 30 states so far this year have eliminated, cut back, or changed their DEI efforts, according to an article in The Chronicle of Higher Education.

It is happening at mostly publicly funded universities, because state legislators and governors are enacting laws that prohibit or defund DEI programs. They’re also cutting budgets and sometimes implementing other measures that restrict diversity efforts. Some colleges have closed their DEI programs altogether to avoid political pressure.

The Institute asked Andrea J. Goldsmith, a top educator and longtime proponent of diversity efforts within the engineering field and society, to weigh in.

Goldsmith shared her personal opinion about DEI with The Institute, not as Princeton’s dean of engineering and applied sciences. A wireless communications pioneer, she is an IEEE Fellow who launched the IEEE Board of Directors Diversity and Inclusion Committee in 2019 and once served as its chair.

She received this year’s IEEE Mulligan Education Medal for educating, mentoring, and inspiring generations of students, and for authoring pioneering textbooks in advanced digital communications.

“For the longest time,” Goldsmith says, “there was so much positive momentum toward improving diversity and inclusion. And now there’s a backlash, which is really unfortunate, but it’s not everywhere.” She says she is proud of her university’s president, who has been vocal that diversity is about excellence and that Princeton is better because its students and faculty are diverse.

In the interview, Goldsmith spoke about why she thinks the topic has become so controversial, what measures universities can take to ensure their students have a sense of belonging, and what can be done to retain female engineers—a group that has been underrepresented in the field.

The Institute: What do you think is behind the movement to dissolve DEI programs?

Goldsmith: That’s a very complex question, and I certainly don’t have the answer.

It has become a politically charged issue because there’s a notion that DEI programs are really about quotas or advancing people who are not deserving of the positions they have been given. Part of the backlash also was spurred by the Oct. 7 attack on Israel, the war in Gaza, and the protests. One notion is that Jewish students are also a minority that needs protection, and why is it that DEI programs are only focused on certain segments of the population as opposed to diversity and inclusion for everyone, for people with all different perspectives, and those who are victims or subject to explicit bias, implicit bias, or discrimination? I think that these are legitimate concerns, and that programs around diversity and inclusion should be addressing them.

The goal of diversity and inclusion is that everybody should be able to participate and reach their full potential. That should go for every profession and, in particular, every segment of the engineering community.

Also in the middle of this backlash is the U.S. Supreme Court’s 2023 decision that ended race-conscious affirmative action in college admissions—which means that universities cannot take diversity into account explicitly in their admission of students. The decision in and of itself only affects undergraduate admissions, but it has raised concerns about broadening the decision to faculty hiring or for other kinds of programs that promote diversity and inclusion within universities and private companies.

I think the Supreme Court’s decision, along with the political polarization and the recent protests at universities, have all been pieces of a puzzle that have come together to paint all DEI programs with a broad brush of not being about excellence and lowering barriers but really being about promoting certain groups of people at the expense of others.

How might the elimination of DEI programs impact the engineering profession specifically?

Goldsmith: I think it depends on what it means to eliminate DEI programs. Programs to promote the diversity of ideas and perspectives in engineering are essential for the success of the profession. As an optimist, I believe we should continue to have programs that ensure our profession can bring in people with diverse perspectives and experiences.

Does that mean that every DEI program in engineering companies and universities needs to evolve or change? Not necessarily. Maybe some programs do because they aren’t necessarily achieving the goal of ensuring that diverse people can thrive.

“My work in the profession of engineering to enhance diversity and inclusion has really been about excellence for the profession.”

We need to be mindful of the concerns that have been raised about DEI programs. I don’t think they are completely unfounded.

If we do the easy thing—which is to just eliminate the programs without replacing them with something else or evolving them—then it will hurt the engineering profession.

The metrics being used to assess whether these programs are achieving their goals need to be reviewed. If they are not, the programs need to be improved. If we do that, I think DEI programs will continue to positively impact the engineering profession.

For universities that have cut or reduced their programs, what are some other ways to make sure all students have a sense of belonging?

Goldsmith: I would look at what other initiatives could be started that would have a different name but still have the goal of ensuring that students have a sense of belonging.

Long before DEI programs, there were other initiatives within universities that helped students figure out their place within the school, initiated them into what it means to be a member of the community, and created a sense of belonging through various activities. These include prefreshman and freshman orientation programs, student groups and organizations, student-led courses (with or without credit), eating clubs, fraternities, and sororities, to name just a few. I am referring here to any program within a university that creates a sense of community for those who participate—which is a pretty broad category of programs

These continue, but they aren’t called DEI programs. They’ve been around for decades, if not since the university system was founded.

How can universities and companies ensure that all people have a good experience in school and the workplace?

Goldsmith: This year has been a huge challenge for universities, with protests, sit-ins, arrests, and violence.

One of the things I said in my opening remarks to freshmen at the start of this semester is that you will learn more from people around you who have different viewpoints and perspectives than you will from people who think like you. And that engaging with people who disagree with you in a respectful and scholarly way and being open to potentially changing your perspective will not only create a better community of scholars but also better prepare you for postgraduation life, where you may be interacting with a boss, coworkers, family, and friends who don’t agree with you.

Finding ways to engage with people who don’t agree with you is essential for engaging with the world in a positive way. I know we don’t think about that as much in engineering because we’re going about building our technologies, doing our equations, or developing our programs. But so much of engineering is collaboration and understanding other people, whether it’s your customers, your boss, or your collaborators.

I would argue everyone is diverse. There’s no such thing as a nondiverse person, because no two people have the exact same set of experiences. Figuring out how to engage with people who are different is essential for success in college, grad school, your career, and your life.

I think it’s a bit different in companies, because you can fire someone who does a sit-in in the boss’s office. You can’t do that in universities. But I think workplaces also need to create an environment where diverse people can engage with each other beyond just what they’re working on in a way that’s respectful and intellectual.

Reports show that half of female engineers leave the high-tech industry because they have a poor work experience. Why is that, and what can be done to retain women?

Goldsmith: That is one of the harder questions facing the engineering profession. The challenges that women face are implicit, including sometimes explicit bias. In extreme cases, there are sexual and other kinds of harassment, and bullying. These egregious behaviors have decreased some. The Me Too movement raised a lot of awareness, but [poor behavior] still is far more prevalent than we want it to be. It’s very difficult for women who have experienced that kind of egregious and illegal behavior to speak up. For example, if it’s their Ph.D. advisor, what does that mean if they speak up? Do they lose their funding? Do they lose all the research they’ve done? This powerful person can bad-mouth them for job applications and potential future opportunities.

So, it’s very difficult to curb these behaviors. However, there has been a lot of awareness raised, and universities and companies have put protections in place against them.

Then there’s implicit bias, where a qualified woman is passed over for a promotion, or women are asked to take meeting notes but not the men. Or a woman leader gets a bad performance review because she doesn’t take no for an answer, is too blunt, or too pushy. All these are things that male leaders are actually lauded for.

There is data on the barriers and challenges that women face and what universities and employers can do to mitigate them. These are the experiences that hurt women’s morale and upward mobility and, ultimately, make them leave the profession.

One of the most important things for a woman to be successful in this profession is to have mentors and supporters. So it is important to make sure that women engineers are assigned mentors at every stage, from student to senior faculty or engineer and everything in between, to help them understand the challenges they face and how to deal with them, as well as to promote and support them.

I also think having leaders in universities and companies recognize and articulate the importance of diversity helps set the tone from the top down and tends to mitigate some of the bias and implicit bias in people lower in the organization.

I think the backlash against DEI is going to make it harder for leaders to articulate the value of diversity, and to put in place some of the best practices around ensuring that diverse people are considered for positions and reach their full potential.

We have definitely taken a step backward in the past year on the understanding that diversity is about excellence and implementing best practices that we know work to mitigate the challenges that diverse people face. But that just means we need to redouble our efforts.

Although this isn’t the best time to be optimistic about diversity in engineering, if we take the long view, I think that things are certainly better than they were 20 or 30 years ago. And I think 20 or 30 years from now they’ll be even better.

IEEE’s Disaster Relief Program Adds to Its Mobile Response Fleet



The IEEE MOVE (Mobile Outreach using Volunteer Engagement) program was launched in 2016 to provide U.S. communities with power and communications capabilities in areas affected by widespread outages due to natural disasters. IEEE MOVE volunteers often collaborate with the American Red Cross.

During the past eight years, the initiative has expanded from one truck based in North Carolina to two, with the second located in Texas. In July IEEE MOVE added a third vehicle, MOVE-3, a van based in San Diego.

IEEE MOVE introduced the new vehicle on 14 August during a ceremony in San Diego. IEEE leaders demonstrated the truck’s modular technology and shared how the components can be transported by plane or helicopter if necessary.

Making MOVE-3 modular

The two other MOVE vehicles are equipped with satellite Internet service, 5G/LTE connectivity, and IP phone service. The trucks can charge up to 100 cellphone batteries simultaneously.

All systems are self-contained, with power generation capability.

“Volunteering is intellectually stimulating. It’s a good opportunity to use your technical knowledge, skills, and abilities.” —Tim Troske

“MOVE-3 has the same technologies but in a modular format so they can be transported easily to remote locations. Unlike the other, larger vehicles, MOVE-3 is a smaller van, which can arrive at disaster sites more quickly,” says IEEE Senior Member Tim Troske, operations lead for the new vehicle. “MOVE-3 has a solar power station that is strong enough to charge two lithium-ion battery packs.”

The vehicle’s flexibility allows the equipment to be deployed not only across California—which is susceptible to wildfires, landslides, and earthquakes—but also to Alaska, Hawaii, and other parts of the Western United States. Similar modular equipment is used by IEEE MOVE programs in Puerto Rico and India.

a group of image standing in front of a large van and a building in the background with red text The new MOVE-3 vehicle was introduced at a ceremony in San Diego. From left: Kathy Hayashi (Region 6 director), Tim Troske (MOVE West operations lead), Loretta Arellano (MOVE USA program director), Kathleen Kramer (IEEE president-elect), Tim Lee (IEEE USA president-elect), Sean Mahoney (American Red Cross Southern California Region CEO) and Bob Birch (American Red Cross local DST manager).IEEE

Become a volunteer

When the vehicles are not deployed for disaster relief, volunteers take them to schools and science fairs to educate students and community members about ways technology can help people during natural disasters.

IEEE MOVE is looking for more volunteers, says IEEE Senior Member Loretta Arellano, MOVE program director, who oversees its U.S. operations.

“Volunteering is intellectually stimulating,” says Troske, who experienced his first emergency deployment in August 2022 after flash floods devastated eastern Kentucky. “It’s a good opportunity to use your technical knowledge, skills, and abilities. You’re at the point of your life where you’ve got all this built-up knowledge and skills. It’s nice to be able to still use them and give back to your community.”

For more information on IEEE MOVE, visit the program’s website. To volunteer, fill out the program’s survey form.

IEEE MOVE is sponsored by IEEE-USA and receives funding from donations to the IEEE Foundation.

IEEE-USA’s New Guide Helps Companies Navigate AI Risks



Organizations that develop or deploy artificial intelligence systems know that the use of AI entails a diverse array of risks including legal and regulatory consequences, potential reputational damage, and ethical issues such as bias and lack of transparency. They also know that with good governance, they can mitigate the risks and ensure that AI systems are developed and used responsibly. The objectives include ensuring that the systems are fair, transparent, accountable, and beneficial to society.

Even organizations that are striving for responsible AI struggle to evaluate whether they are meeting their goals. That’s why the IEEE-USA AI Policy Committee published “A Flexible Maturity Model for AI Governance Based on the NIST AI Risk Management Framework,” which helps organizations assess and track their progress. The maturity model is based on guidance laid out in the U.S. National Institute of Standards and Technology’s AI Risk Management Framework (RMF) and other NIST documents.

Building on NIST’s work

NIST’s RMF, a well-respected document on AI governance, describes best practices for AI risk management. But the framework does not provide specific guidance on how organizations might evolve toward the best practices it outlines, nor does it suggest how organizations can evaluate the extent to which they’re following the guidelines. Organizations therefore can struggle with questions about how to implement the framework. What’s more, external stakeholders including investors and consumers can find it challenging to use the document to assess the practices of an AI provider.

The new IEEE-USA maturity model complements the RMF, enabling organizations to determine their stage along their responsible AI governance journey, track their progress, and create a road map for improvement. Maturity models are tools for measuring an organization’s degree of engagement or compliance with a technical standard and its ability to continuously improve in a particular discipline. Organizations have used the models since the 1980a to help them assess and develop complex capabilities.

The framework’s activities are built around the RMF’s four pillars, which enable dialogue, understanding, and activities to manage AI risks and responsibility in developing trustworthy AI systems. The pillars are:

  • Map: The context is recognized, and risks relating to the context are identified.
  • Measure: Identified risks are assessed, analyzed, or tracked.
  • Manage: Risks are prioritized and acted upon based on a projected impact.
  • Govern: A culture of risk management is cultivated and present.

A flexible questionnaire

The foundation of the IEEE-USA maturity model is a flexible questionnaire based on the RMF. The questionnaire has a list of statements, each of which covers one or more of the recommended RMF activities. For example, one statement is: “We evaluate and document bias and fairness issues caused by our AI systems.” The statements focus on concrete, verifiable actions that companies can perform while avoiding general and abstract statements such as “Our AI systems are fair.”

The statements are organized into topics that align with the RFM’s pillars. Topics, in turn, are organized into the stages of the AI development life cycle, as described in the RMF: planning and design, data collection and model building, and deployment. An evaluator who’s assessing an AI system at a particular stage can easily examine only the relevant topics.

Scoring guidelines

The maturity model includes these scoring guidelines, which reflect the ideals set out in the RMF:

  • Robustness, extending from ad-hoc to systematic implementation of the activities.
  • Coverage, ranging from engaging in none of the activities to engaging in all of them.
  • Input diversity, ranging from having activities informed by inputs from a single team to diverse input from internal and external stakeholders.

Evaluators can choose to assess individual statements or larger topics, thus controlling the level of granularity of the assessment. In addition, the evaluators are meant to provide documentary evidence to explain their assigned scores. The evidence can include internal company documents such as procedure manuals, as well as annual reports, news articles, and other external material.

After scoring individual statements or topics, evaluators aggregate the results to get an overall score. The maturity model allows for flexibility, depending on the evaluator’s interests. For example, scores can be aggregated by the NIST pillars, producing scores for the “map,” “measure,” “manage,” and “govern” functions.

When used internally, the maturity model can help organizations determine where they stand on responsible AI and can identify steps to improve their governance.

The aggregation can expose systematic weaknesses in an organization’s approach to AI responsibility. If a company’s score is high for “govern” activities but low for the other pillars, for example, it might be creating sound policies that aren’t being implemented.

Another option for scoring is to aggregate the numbers by some of the dimensions of AI responsibility highlighted in the RMF: performance, fairness, privacy, ecology, transparency, security, explainability, safety, and third-party (intellectual property and copyright). This aggregation method can help determine if organizations are ignoring certain issues. Some organizations, for example, might boast about their AI responsibility based on their activity in a handful of risk areas while ignoring other categories.

A road toward better decision-making

When used internally, the maturity model can help organizations determine where they stand on responsible AI and can identify steps to improve their governance. The model enables companies to set goals and track their progress through repeated evaluations. Investors, buyers, consumers, and other external stakeholders can employ the model to inform decisions about the company and its products.

When used by internal or external stakeholders, the new IEEE-USA maturity model can complement the NIST AI RMF and help track an organization’s progress along the path of responsible governance.

Engineering Students Innovate Accessibility Technology



More than 15 percent of the world’s population—greater than 1 billion people—live with disabilities including hearing loss, vision problems, mental health challenges, and lack of mobility. EPICS in IEEE has engaged students’ ingenuity worldwide to address accessibility issues through adaptive services, redesigned technology, and new assistive technologies during its 2023 Access and Abilities Competition.

The competition challenged university students around the world to use their engineering skills to help with accessibility issues. The EPICS in IEEE Committee received 58 proposals and selected 23 projects, which were funded in early 2023.

EPICS is a grant-based program for IEEE Educational Activities that funds service learning projects for university and high school students.

The teams, which include faculty members and IEEE members, create and execute engineering projects in partnership with organizations to improve their communities.

“Some gamers with arm or hand deficiencies play with their feet, nose, mouth, or elbows, or they use devices not intended for that purpose and are forced to adapt. I realized that if there was a dedicated device designed for such individuals, they’d be able to play and experience the joy of gaming.” —John McCauley.

The four EPICS in IEEE pillars are access and abilities; environment; education and outreach; and human services. In the Access and Abilities Competition, student teams received between US $1,000 and $10,000. Each team had 12 months to build a prototype or solution in collaboration with its community partners. The projects, which involved more than 350 students and 149 IEEE volunteers, aimed to help an estimated 8,000 people in the first year of deployment.

The teams included participants from IEEE student branches, IEEE Women in Engineering groups, IEEE–Eta Kappa Nu honor society chapters, and IEEE sections.

Projects included a sound-detection device and a self-navigating robotic walking aid.

The competition was funded by the Taenzer Memorial Fund in 2019, with $90,000 allocated by the IEEE Foundation. The fund was established with a bequest from the estate of Jon C. Taenzer, an IEEE life senior member.

The student teams submitted their final reports this year.

Here are highlights from four of the projects:

Adaptive mouse for gaming

A photo of a smiling man and woman in front of electrical components. Members of the adaptive mouse EPICS in IEEE team at the University of Florida in Gainesville designed a device that contains keyboard functions and can be used with just one hand.EPICS in IEEE

A team of 10 biomedical engineering students at the University of Florida in Gainesville designed their project to help people whose hands or arms have an abnormality, so they could more easily play games.

The team built five adaptive mouse devices and plans to deliver them this year to five recipients involved with Hands to Love, a Florida-based organization that supports children with upper limb abnormalities.

The team incorporated the keyboard elements of gaming into a mouse, allowing gaming gestures and movements with just one hand. The 3D-printed mouse combines existing gaming technology, including the internal mechanisms of keyboards, a Logitech mouse, and Microsoft Xbox controller emulations. It allows the player to move and aim while gaming with just a mouse.

Gaming enthusiast John McCauley, a junior in the university’s biomedical engineering program, was behind the project’s conception.

“Some gamers with arm or hand deficiencies play with their feet, nose, mouth, or elbows, or they use devices not intended for that purpose and are forced to adapt,” McCauley says. “I realized that if there was a dedicated device designed for such individuals, they’d be able to play and experience the joy of gaming.”

The team used its $1,000 EPICS in IEEE grant to purchase the prototype’s components.

Making campus more accessible

A photo of two people sitting in front of a laptop. Universidad Tecnólogica de Panamá students test their microcontroller-based prototype, designed to help make their school more accessible.EPICS in IEEE

A team of 15 undergraduate students from the Universidad Tecnológica de Panamá in Panama City and 24 students from four high schools in Chiriquí, Panama, created several projects focused on people with visual or physical disabilities. The team’s goal was to make their campus and community more accessible to those with different abilities. The projects enhanced their classmates’ autonomy and improved their quality of life.

The team made braille signs using a 3D printer, and they designed and built a personalized wheelchair. The students also automated the doors within the engineering department to provide better access to classrooms and corridors for those with disabilities.

“This project will be very useful, especially [in Panama], where buildings have not been adapted for people with disabilities,” said team member Gael Villarreal, a high school junior.

While working together on the project, team members honed their technical and interpersonal skills. They came to appreciate the importance of collaboration and communication.

“I learned that you need to have new experiences, be sociable, meet and get along with new people, and work as a team to be successful,” high school junior Gianny Rodriguez said.

The team used its $8,100 EPICS grant to purchase materials and train the community on using the new tools.

Helping children with hearing impairments

A team of students from the SRM Institute of Science and Technology student branch, in Chennai, India, worked with the Dr. MGR Home and Higher Secondary School for the Speech and Hearing Impaired, also in Chennai, to build a device to help children with hearing aids and cochlear implants learn Tamil, the local language. In rural areas, young children often do not have access to specialized speech and hearing health care providers to learn critical language skills. The team’s assistive device supports native language skill development, helping parents and trainers support the children in language and sound acquisition.

The project is designed to provide access to aural rehabilitation, including identifying hearing loss and therapies for children far from hospitals and rehabilitation centers.

The kiosklike device resembles an ATM and includes surround-sound speakers and touchscreens. It uses a touch monitor and microphones to access tasks and tests that help young children learn Tamil.

The team worked with 150 pupils at the school between the ages of 5 and 8 to develop the prototype. The built-in app includes tasks that focus on improving auditory awareness, auditory discrimination (the ability to recognize, compare, and distinguish between distinct sounds), and language acquisition (how people perceive and comprehend language).

The device tests the pupil’s hearing range based on sounds with visual cues, sounds at low intensity, sounds in the presence of noise, and sound direction.

The speakers emulate real-life situations and are used to relay the teacher’s instructions.

The team received a $1,605 grant to execute the project.

This video spotlights the challenges youngsters with hearing disabilities in Chenni, India, face and how the assistive technology will help them.


Self-navigating robotic walking aid

A group of people around a device and a sign that says, "Trinity Eldercare." Students from the IEEE Swinburne Sarawak student branch in Malaysia brought a prototype of their walking aid to Trinity Eldercare, their community partner.EPICS in IEEE

To help senior citizens with mobility issues, a team of students from the IEEE Swinburne Sarawak student branch at the Swinburne University of Technology, in Malaysia, created a self-navigating walking aid.

The team wanted to improve existing walkers on the market, so they surveyed residents at Trinity Eldercare to find out what features would be useful to them.

The students’ prototype, based on a commercial walker, includes a wearable haptic belt that detects obstacles and alerts the user. Pressure sensors in the hand grips sense which direction the user wants to go. One of the senior citizens’ most requested features was the ability to locate a misplaced walker. The team was able to address the issue using sensors.

“I gained substantial knowledge in robotics programming and artificial intelligence and deep learning integration for person tracking and autonomous navigation,” one of the team members said. “Additionally, presenting our smart walker prototype at the International Invention, Innovation, Technolgy Competition and Exhibition in Malaysia enhanced my presentation skills, as I successfully articulated its viability and usefulness to the judges.”

The project received a $1,900 grant.

Join the EPICS in IEEE mailing list to learn more about all the Access and Abilities Competition projects and other impactful efforts made possible by donations to the IEEE Foundation. To learn more, check out the video of the competition:

The EPICS in IEEE program is celebrating its 15th year of supporting and facilitating service-learning projects and impacting students and communities worldwide

Conference To Spotlight Harm Caused by Online Platforms



This year’s IEEE Conference on Digital Platforms and Societal Harms is scheduled to be held on 14 and 15 October in a hybrid format, with both in-person and virtual keynote panel sessions. The in-person events are to take place at American University, in Washington, D.C.

The annual conference focuses on how social media and similar platforms amplify hate speech, extremism, exploitation, misinformation, and disinformation, as well as what measures are being taken to protect people.

With the popularity of social media and the rise of artificial intelligence, content can be more easily created and shared online by individuals and bots, says Andre Oboler, the general chair of IEEE DPSH. The IEEE senior member is CEO of the Online Hate Prevention Institute, which is based in Sydney. Oboler cautions that a lot of content online is fabricated, so some people are making economic, political, social, and health care decisions based on inaccurate information.

“Addressing the creation, propagation, and engagement of harmful digital information is a complex problem. It requires broad collaboration among various stakeholders including technologists; lawmakers and policymakers; nonprofit organizations; private sectors; and end users.”

Misinformation (which is false) and disinformation (which is intentionally false) also can propagate hate speech, discrimination, violent extremism, and child sexual abuse, he says, and can create hostile online environments, damaging people’s confidence in information and endangering their lives.

To help prevent harm, he says, cutting-edge technical solutions and changes in public policy are needed. At the conference, academic researchers and leaders from industry, government, and not-for-profit organizations are gathering to discuss steps being taken to protect individuals online.

Experts to explore challenges and solutions

The event includes panel discussions and Q&A sessions with experts from a variety of technology fields and organizations. Scheduled speakers include Paul Giannasi from the U.K. National Police Chiefs’ Council; Skip Gilmour of the Global Internet Forum to Counter Terrorism; and Maike Luiken, chair of IEEE’s Planet Positive 2030 initiative.

“Addressing the creation, propagation, and engagement of harmful digital information is a complex problem,” Oboler says. “It requires broad collaboration among various stakeholders including technologists; lawmakers and policymakers; nonprofit organizations; private sectors; and end users.

“There is an emerging need for these stakeholders and researchers from multiple disciplines to have a joint forum to understand the challenges, exchange ideas, and explore possible solutions.”

To register for in-person and online conference attendance, visit the event’s website. Those who want to attend only the keynote panels can register for free access to the discussions. Attendees who register by 22 September and use the code 25off2we receive a 25 percent discount.

Check out highlights from the 2023 IEEE Conference on Digital Platforms and Societal Harms.

From Punch Cards to Python



In today’s digital world, it’s easy for just about anyone to create a mobile app or write software, thanks to Java, JavaScript, Python, and other programming languages.

But that wasn’t always the case. Because the primary language of computers is binary code, early programmers used punch cards to instruct computers what tasks to complete. Each hole represented a single binary digit.

That changed in 1952 with the A-0 compiler, a series of specifications that automatically translates high-level languages such as English into machine-readable binary code.

The compiler, now an IEEE Milestone, was developed by Grace Hopper, who worked as a senior mathematician at the Eckert-Mauchly Computer Corp., now part of Unisys, in Philadelphia.

IEEE Fellow’s innovation allowed programmers to write code faster and easier using English commands. For her, however, the most important outcome was the influence it had on the development of modern programming languages, making writing code more accessible to everyone, according to a Penn Engineering Today article.

The dedication of the A-0 compiler as an IEEE Milestone was held in Philadelphia on 7 May at the University of Pennsylvania. That’s where the Eckert-Mauchly Computer Corp. got its start.

“This milestone celebrates the first step of applying computers to automate the tedious portions of their own programming,” André DeHon, professor of electrical systems, engineering, and computer science, said at the dedication ceremony.

Eliminating the punch-card system

To program a computer, early technicians wrote out tasks in assembly language—a human-readable way to write machine code, which is made up of binary numbers. They then manually translated the assembly language into machine code and punched holes representing the binary digits into cards, according to a Medium article on the method. The cards were fed into a machine that read the holes and input the data into the computer.

The punch-card system was laborious; it could take days to complete a task. The cards couldn’t be used with even a slight defect such as a bent corner. The method also had a high risk of human error.

After leading the development of the Electronic Numerical Integrator and Computer (ENIAC) at Penn, computer scientists J. Presper Eckert and John W. Mauchly set about creating a replacement for punch cards. ENIAC was built to improve the accuracy of U.S. artillery during World War II, but the two men wanted to develop computers for commercial applications, according to a Pennsylvania Center for the Book article.

The machine they designed was the first known large-scale electronic computer, the Universal Automatic, or UNIVAC I. Hopper was on its development team.

UNIVAC I used 6,103 vacuum tubes and took up a 33-square-meter room. The machine had a memory unit. Instead of punch cards, the computer used magnetic tape to input data. The tapes, which could hold audio, video, and written data, were up to 457 meters long. Unlike previous computers, the UNIVAC I had a keyboard so an operator could input commands, according to the Pennsylvania Center for the Book article.

“This milestone celebrates the first step of applying computers to automate the tedious portions of their own programming.” —André DeHon

Technicians still had to manually feed instructions into the computer, however, to run any new program.

That time-consuming process led to errors because “programmers are lousy copyists,” Hopper said in a speech for the Association for Computing Machinery. “It was amazing how many times a 4 would turn into a delta, which was our space symbol, or into an A. Even B’s turned into 13s.”

According to a Hidden Heroes article, Hopper had an idea for simplifying programming: Have the computer translate English to machine code.

She was inspired by computer scientist Betty Holberton’s sort/merge generator and Mauchly’s Short Code. Holberton is one of six women who programmed the ENIAC to calculate artillery trajectories in seconds, and she worked alongside Hopper on the UNIVAC I. Her sort/merge program, invented in 1951 for the UNIVAC I, handled the large data files stored on magnetic tapes. Hopper defined the sort/merge program as the first version of virtual memory because it made use of overlays automatically without being directed to by the programmer, according to a Stanford presentation about programming languages. The Short Code, which was developed in the 1940s, allowed technicians to write programs using brief sequences of English words corresponding directly to machine code instructions. It bridged the gap between human-readable code and machine-executable instructions.

“I think the first step to tell us that we could actually use a computer to write programs was the sort/merge generator,” Hopper said in the presentation. “And Short Code was the first step in moving toward something which gave a programmer the actual power to write a program in a language which bore no resemblance whatsoever to the original machine code.”

A photo of a woman standing in front of a large computer bank. IEEE Fellow Grace Hopper inputting call numbers into the Universal Automatic (UNIVAC I), which allows the computer to find the correct instructions to complete. The A-0 compiler translates the English instructions into machine-readable binary code.Computer History Museum

Easier, faster, and more accurate programming

Hopper, who figured computers should speak human-like languages, rather than requiring humans to speak computer languages, began thinking about how to allow programmers to call up specific codes using English, according to an IT Professional profile.

But she needed a library of frequently used instructions for the computer to reference and a system to translate English to machine code. That way, the computer could understand what task to complete.

Such a library didn’t exist, so Hopper built her own. It included tapes that held frequently used instructions for tasks that she called subroutines. Each tape stored one subroutine, which was assigned a three-number call sign so that the UNIVAC I could locate the correct tape. The numbers represented sets of three memory addresses: one for the memory location of the subroutine, another for the memory location of the data, and the third for the output location, according to the Stanford presentation.

“All I had to do was to write down a set of call numbers, let the computer find them on the tape, and do the additions,” she said in a Centre for Computing History article. “This was the first compiler.”

The system was dubbed the A-0 compiler because code was written in one language, which was then “compiled” into a machine language.

What previously had taken a month of manual coding could now be done in five minutes, according to a Cockroach Labs article.

Hopper presented the A-0 to Eckert-Mauchly Computer executives. Instead of being excited, though, they said they didn’t believe a computer could write its own programs, according to the article.

“I had a running compiler, and nobody would touch it, because they carefully told me computers could only do arithmetic; they could not do programs,” Hopper said. “It was a selling job to get people to try it. I think with any new idea, because people are allergic to change, you have to get out and sell the idea.”

It took two years for the company’s leadership to accept the A-0.

In 1954, Hopper was promoted to director of automatic programming for the UNIVAC division. She went on to create the first compiler-based programming languages including Flow-Matic, the first English language data-processing compiler. It was used to program UNIVAC I and II machines.

Hopper also was involved in developing COBOL, one of the earliest standardized computer languages. It enabled computers to respond to words in addition to numbers, and it is still used in business, finance, and administrative systems. Hopper’s Flow-Matic formed the foundation of COBOL, whose first specifications were made available in 1959.

A plaque recognizing the A-0 is now displayed at the University of Pennsylvania. It reads:

During 1951–1952, Grace Hopper invented the A-0 Compiler, a series of specifications that functioned as a linker/loader. It was a pioneering achievement of automatic programming as well as a pioneering utility program for the management of subroutines. The A-0 Compiler influenced the development of arithmetic and business programming languages. This led to COBOL (Common Business-Oriented Language), becoming the dominant high-level language for business applications.

The IEEE Philadelphia Section sponsored the nomination.

Administered by the IEEE History Center and supported by donors, the Milestone program recognizes outstanding technical developments worldwide.

About Grace Hopper


Hopper didn’t start as a computer programmer. She was a mathematician at heart, earning bachelor’s degrees in mathematics and physics in 1928 from Vassar College, in Poughkeepsie, N.Y. She then received master’s and doctoral degrees in mathematics and mathematical physics from Yale in 1930 and 1934, respectively.

She taught math at Vassar, but after the bombing of Pearl Harbor and the U.S. entry into World War II, Hopper joined the war effort. She took a leave of absence from Vassar to join the U.S. Naval Reserve (Women’s Reserve) in December 1943. She was assigned to the Bureau of Ships Computation Project at Harvard, where she worked for mathematician Howard Aiken. She was part of Aiken’s team that developed the Mark I, one of the earliest electromechanical computers. Hopper was the third person and the first woman to program the machine.

After the war ended, she became a research fellow at the Harvard Computation Laboratory. In 1946 she joined the Eckert-Mauchly Computer Corp., where she worked until her retirement in 1971. During 1959 she was an adjunct lecturer at Penn’s Moore School of Electrical Engineering.

Her work in programming earned her the nickname “Amazing Grace,” according to an entry about her on the Engineering and Technology History Wiki.

Hopper remained a member of the Naval Reserve and, in 1967, was recalled to active duty. She led the effort to standardize programming languages for the military, according to the ETHW entry. She was eventually promoted to rear admiral. When she retired from the Navy at the age of 79 in 1989, she was the oldest serving officer in all the U.S. armed forces.

Among her many honors was the 1991 U.S. National Medal of Technology and Innovation “for her pioneering accomplishments in the development of computer programming languages that simplified computer technology and opened the door to a significantly larger universe of users.”

She received 40 honorary doctorates from universities, and the Navy named a warship in her honor.

Get to Know the IEEE Board of Directors



The IEEE Board of Directors shapes the future direction of IEEE and is committed to ensuring IEEE remains a strong and vibrant organization—serving the needs of its members and the engineering and technology community worldwide—while fulfilling the IEEE mission of advancing technology for the benefit of humanity.

This article features IEEE Board of Directors members A. Matt Francis, Tom Murad, and Christopher Root.

IEEE Senior Member A. Matt Francis

Director, IEEE Region 5: Southwestern U.S.

A photo of a smiling man in a sweater. Moriah Hargrove Anders

Francis’s primary technology focus is extreme environment and high-temperature integrated circuits. His groundbreaking work has pushed the boundaries of electronics, leading to computers operating in low Earth orbit for more than a year on the International Space Station and on jet engines. Francis and his team have designed and built some of the world’s most rugged semiconductors and systems.

He is currently helping explore new computing frontiers in supersonic and hypersonic flight, geothermal energy exploration, and molten salt reactors. Well versed in shifting technology from idea to commercial application, Francis has secured and led projects with the U.S. Air Force, DARPA, NASA, the National Science Foundation, the U.S. Department of Energy, and private-sector customers.

Francis’s influence extends beyond his own ventures. He is a member of the IEEE Aerospace and Electronic Systems, IEEE Computer, and IEEE Electronics Packaging societies, demonstrating his commitment to industry and continuous learning.

He attended the University of Arkansas in Fayetteville for both his undergraduate and graduate degrees. He joined IEEE while at the university and was president of the IEEE–Eta Kappa Nu honor society’s Gamma Phi chapter. Francis’s other past volunteer roles include serving as chair of the IEEE Ozark Section, which covers Northwest Arkansas, and also as a member of the IEEE-USA Entrepreneurship Policy Innovation Committee.

His deep-rooted belief in the power of collaboration is evident in his willingness to share knowledge and support aspiring entrepreneurs. Francis is proud to have helped found a robotics club (an IEEE MGA Local Group) in his rural Elkins, Ark., community and to have served on steering committees for programs including IEEE TryEngineering and IEEE-USA’s Innovation, Research, and Workforce Conferences. He serves as an elected city council member for his town, and has cofounded two non-profits, supporting his community and the state of Arkansas.

Francis’s journey from entrepreneur to industry leader is a testament to his determination and innovative mindset. He has received numerous awards including the IEEE-USA Entrepreneur Achievement Award for Leadership in Entrepreneurial Spirit, IEEE Region 5 Directors Award, and IEEE Region 5 Outstanding Individual Member Achievement Award.

IEEE Senior Member Tom Murad

Director, IEEE Region 7: Canada

A photo of a smiling man in a suit. Siemens Canada

Murad is a respected technology leader, award-winning educator, and distinguished speaker on engineering, skills development, and education. Recently retired, he has 40 years of experience in professional engineering and technical operations executive management, including more than 10 years of academic and R&D work in industrial controls and automation.

He received his doctorate (Ph.D.) degree in power electronics and industrial controls from Loughborough University of Technology in the U.K.

Murad has held high-level positions in several international engineering and industrial organizations, and he contributed to many global industrial projects. His work on projects in power utilities, nuclear power, oil and gas, mining, automotive, and infrastructure industries has directly impacted society and positively contributed to the economy. He is a strong advocate of innovation and creativity, particularly in the areas of digitalization, smart infrastructure, and Industry 4.0. He continues his academic career as an adjunct professor at University of Guelph in Ontario, Canada.

His dedication to enhancing the capabilities of new generations of engineers is a source of hope and optimism. His work in significantly improving the quality and relevance of engineering and technical education in Canada is a testament to his commitment to the future of the engineering profession and community. For that he has been assigned by the Ontario Government to be a member of the board of directors of the Post Secondary Education Quality Assessment Board (PEQAB).

Murad is a member of the IEEE Technology and Engineering Management, IEEE Education, IEEE Intelligent Transportation Systems, and IEEE Vehicular Technology societies, the IEEE-Eta Kappa Nu honor society, and the Editorial Advisory Board Chair for the IEEE Canadian Review Magazine. His accomplishments show his passion for the engineering profession and community.

He is a member of the Order of Honor of the Professional Engineers of Ontario, Canada, Fellow of Engineers Canada, Fellow of Engineering Institutes of Canada (EIC), and received the IEEE Canada J.M. Ham Outstanding Engineering Educator Award, among other recognitions highlighting his impact on the field.

IEEE Senior Member Christopher Root

Director, Division VII

A photo of a smiling man in a suit. Vermont Electric Power Company and Shana Louiselle

Root has been in the electric utility industry for more than 40 years and is an expert in power system operations, engineering, and emergency response. He has vast experience in the operations, construction, and maintenance of transmission and distribution utilities, including all phases of the engineering and design of power systems. He has shared his expertise through numerous technical presentations on utility topics worldwide.

Currently an industry advisor and consultant, Root focuses on the crucial task of decarbonizing electricity production. He is engaged in addressing the challenges of balancing an increasing electrical market and dependence on renewable energy with the need to provide low-cost, reliable electricity on demand.

Root’s journey with IEEE began in 1983 when he attended his first meeting as a graduate student at Rensselaer Polytechnic Institute, in Troy, N.Y. Since then, he has served in leadership roles such as treasurer, secretary, and member-at-large of the IEEE Power & Energy Society (PES). His commitment to the IEEE mission and vision is evident in his efforts to revitalize the dormant IEEE PES Boston Chapter in 2007 and his instrumental role in establishing the IEEE PES Green Mountain Section in Vermont in 2015. He also is a member of the editorial board of the IEEE Power & Energy Magazine and the IEEE–Eta Kappa Nu honor society.

Root’s contributions and leadership in the electric utility industry have been recognized with the IEEE PES Leadership in Power Award and the PES Meritorious Service Award.

❌