Reading view

There are new articles available, click to refresh the page.

Students Tackle Environmental Issues in Colombia and Türkiye



EPICS in IEEE, a service learning program for university students supported by IEEE Educational Activities, offers students opportunities to engage with engineering professionals and mentors, local organizations, and technological innovation to address community-based issues.

The following two environmentally focused projects demonstrate the value of teamwork and direct involvement with project stakeholders. One uses smart biodigesters to better manage waste in Colombia’s rural areas. The other is focused on helping Turkish olive farmers protect their trees from climate change effects by providing them with a warning system that can identify growing problems.

No time to waste in rural Colombia

Proper waste management is critical to a community’s living conditions. In rural La Vega, Colombia, the lack of an effective system has led to contaminated soil and water, an especially concerning issue because the town’s economy relies heavily on agriculture.

The Smart Biodigesters for a Better Environment in Rural Areas project brought students together to devise a solution.

Vivian Estefanía Beltrán, a Ph.D. student at the Universidad del Rosario in Bogotá, addressed the problem by building a low-cost anaerobic digester that uses an instrumentation system to break down microorganisms into biodegradable material. It reduces the amount of solid waste, and the digesters can produce biogas, which can be used to generate electricity.

“Anaerobic digestion is a natural biological process that converts organic matter into two valuable products: biogas and nutrient-rich soil amendments in the form of digestate,” Beltrán says. “As a by-product of our digester’s operation, digestate is organic matter that can’t be transferred into biogas but can be used as a soil amendment for our farmers’ crops, such as coffee.

“While it may sound easy, the process is influenced by a lot of variables. The support we’ve received from EPICS in IEEE is important because it enables us to measure these variables, such as pH levels, temperature of the reactor, and biogas composition [methane and hydrogen sulfide]. The system allows us to make informed decisions that enhance the safety, quality, and efficiency of the process for the benefit of the community.”

The project was a collaborative effort among Universidad del Rosario students, a team of engineering students from Escuela Tecnológica Instituto Técnico Central, Professor Carlos Felipe Vergara, and members of Junta de Acción Comunal (Vereda La Granja), which aims to help residents improve their community.

“It’s been a great experience to see how individuals pursuing different fields of study—from engineering to electronics and computer science—can all work and learn together on a project that will have a direct positive impact on a community.” —Vivian Estefanía Beltrán

Beltrán worked closely with eight undergraduate students and three instructors—Maria Fernanda Gómez, Andrés Pérez Gordillo (the instrumentation group leader), and Carlos Felipe Vergara-Ramirez—as well as IEEE Graduate Student Member Nicolás Castiblanco (the instrumentation group coordinator).

The team constructed and installed their anaerobic digester system in an experimental station in La Vega, a town located roughly 53 kilometers northwest of Bogotá.

“This digester is an important innovation for the residents of La Vega, as it will hopefully offer a productive way to utilize the residual biomass they produce to improve quality of life and boost the economy,” Beltrán says. Soon, she adds, the system will be expanded to incorporate high-tech sensors that automatically monitor biogas production and the digestion process.

“For our students and team members, it’s been a great experience to see how individuals pursuing different fields of study—from engineering to electronics and computer science—can all work and learn together on a project that will have a direct positive impact on a community. It enables all of us to apply our classroom skills to reality,” she says. “The funding we’ve received from EPICS in IEEE has been crucial to designing, proving, and installing the system.”

The project also aims to support the development of a circular economy, which reuses materials to enhance the community’s sustainability and self-sufficiency.

Protecting olive groves in Türkiye

Türkiye is one of the world’s leading producers of olives, but the industry has been challenged in recent years by unprecedented floods, droughts, and other destructive forces of nature resulting from climate change. To help farmers in the western part of the country monitor the health of their olive trees, a team of students from Istanbul Technical University developed an early-warning system to identify irregularities including abnormal growth.

“Almost no olives were produced last year using traditional methods, due to climate conditions and unusual weather patterns,” says Tayfun Akgül, project leader of the Smart Monitoring of Fruit Trees in Western Türkiye initiative.

“Our system will give farmers feedback from each tree so that actions can be taken in advance to improve the yield,” says Akgül, an IEEE senior member and a professor in the university’s electronics and communication engineering department.

“We’re developing deep-learning techniques to detect changes in olive trees and their fruit so that farmers and landowners can take all necessary measures to avoid a low or damaged harvest,” says project coordinator Melike Girgin, a Ph.D. student at the university and an IEEE graduate student member.

Using drones outfitted with 360-degree optical and thermal cameras, the team collects optical, thermal, and hyperspectral imaging data through aerial methods. The information is fed into a cloud-based, open-source database system.

Akgül leads the project and teaches the team skills including signal and image processing and data collection. He says regular communication with community-based stakeholders has been critical to the project’s success.

“There are several farmers in the village who have helped us direct our drone activities to the right locations,” he says. “Their involvement in the project has been instrumental in helping us refine our process for greater effectiveness.

“For students, classroom instruction is straightforward, then they take an exam at the end. But through our EPICS project, students are continuously interacting with farmers in a hands-on, practical way and can see the results of their efforts in real time.”

Looking ahead, the team is excited about expanding the project to encompass other fruits besides olives. The team also intends to apply for a travel grant from IEEE in hopes of presenting its work at a conference.

“We’re so grateful to EPICS in IEEE for this opportunity,” Girgin says. “Our project and some of the technology we required wouldn’t have been possible without the funding we received.”

A purpose-driven partnership

The IEEE Standards Association sponsored both of the proactive environmental projects.

“Technical projects play a crucial role in advancing innovation and ensuring interoperability across various industries,” says Munir Mohammed, IEEE SA senior manager of product development and market engagement. “These projects not only align with our technical standards but also drive technological progress, enhance global collaboration, and ultimately improve the quality of life for communities worldwide.”

For more information on the program or to participate in service-learning projects, visit EPICS in IEEE.

On 7 November, this article was updated from an earlier version.

U.S. Engineers’ Salaries Up in 2023



There’s good earnings news for U.S. members: Salaries are rising. Base salaries increased by about 5 percent from 2022 to 2023, according to the IEEE-USA 2024 Salary and Benefits Survey Report.

Last year’s report showed that inflation had outpaced earnings growth but that’s not the case this year.

In current dollars, the median income of U.S. engineers and other tech professionals who are IEEE members was US $174,161 last year, up about 5 percent from $169,000 in 2022, excluding overtime pay, profit sharing, and other supplemental earnings. Unemployment fell to 1.2 percent in this year’s survey, down from 1.4 percent in the previous year.

As with prior surveys, earned income is measured for the year preceding the survey’s date of record—so the 2024 survey reports income earned in 2023.

To calculate the median salary, IEEE-USA considered only respondents who were tech professionals working full time in their primary area of competence—a sample of 4,192 people.

chart visualization

Circuits and device engineers earn the most

Those specializing in circuits and devices earned the highest median income, $196,614, followed by those working in communications ($190,000) and computers/software technology ($181,000).

Specific lucrative subspecialties include broadcast technology ($226,000), image/video ($219,015), and hardware design or hardware support ($215,000).

Engineers in the energy and power engineering field earned the lowest salary: $155,000.

Higher education affects how well one is paid. On average, those with a Ph.D. earned the highest median income: $193,636. Members with a master’s degree in electrical engineering or computer engineering reported a salary of $182,500. Those with a bachelor’s degree in electrical engineering or computer engineering earned a median income of $159,000.

Earning potential also depends on geography within the United States. Respondents in IEEE Region 6 (Western U.S.) fared substantially better than those in Region 4 (Central U.S.), earning nearly $48,500 more on average. However, the report notes, the cost of living in the western part of the country is significantly higher than elsewhere.

The top earners live in California, Maryland, and Oregon, while those earning the least live in Arkansas, Nebraska, and South Carolina.

chart visualization

Academics are among the lowest earners

Full professors earned an average salary of $190,000, associate professors earned $118,000, and assistant professors earned $104,500.

Almost 38 percent of the academics surveyed are full professors, 16.6 percent are associate professors, and 11.6 percent are assistant professors. About 10 percent of respondents hold a nonteaching research appointment. Nearly half (46.8 percent) are tenured, and 10.7 percent are on a tenure track.

Gender and ethnic gaps widen

The gap between women’s and men’s salaries increased. Even considering experience levels, women earned $30,515 less than their male counterparts.

chart visualization

The median primary income is highest among Asian/Pacific Islander technical professionals, at $178,500, followed by White engineers ($176,500), Hispanic engineers ($152,178), African-American engineers ($150,000), and Native American/Alaskan Native engineers ($148,000). The salary gap between Black engineers and the average salary reported is $3,500 more than in last year’s report.

chart visualization

Asians and Pacific Islanders are the largest minority group, at 14.4 percent. Only 5 percent of members are Hispanic, 2.6 percent are African Americans, and American Indians/Alaskan Natives account for 0.9 percent of the respondents.

More job satisfaction

According to the report, overall job satisfaction is higher than at any time in the past 10 years. Members reported that their work was technically challenging and meaningful to their company. On the whole, they weren’t satisfied with advancement opportunities or their current compensation, however.

The 60-page report is available for purchase at the member price of US $125. Nonmembers pay $225.

chart visualization

Teens Gain Experience at IEEE’s TryEngineering Summer Institute



The future of engineering is bright, and it’s being shaped by the young minds at the TryEngineering Summer Institute (TESI), a program administered by IEEE Educational Activities. This year more than 300 students attended TESI to fuel their passion for engineering and prepare for higher education and careers. Sessions were held from 30 June through 2 August on the campuses of Rice University, the University of Pennsylvania, and the University of San Diego.

The program is an immersive experience designed for students ages 13 to 17. It offers hands-on projects, interactive workshops, field trips, and insights into the profession from practicing engineers. Participants get to stay on a college campus, providing them with a preview of university life.

Student turned instructor

One future innovator is Natalie Ghannad, who participated in the program as a student in 2022 and was a member of this year’s instructional team in Houston at Rice University. Ghannad is in her second year as an electrical engineering student at the University of San Francisco. University students join forces with science and engineering teachers at each TESI location to serve as instructors.

For many years, Ghannad wanted to follow in her mother’s footsteps and become a pediatric neurosurgeon. As a high school junior in Houston in 2022, however, she had a change of heart and decided to pursue engineering after participating in the TESI at Rice. She received a full scholarship from the IEEE Foundation TESI Scholarship Fund, supported by IEEE societies and councils.

“I really liked that it was hands-on,” Ghannad says. “From the get-go, we were introduced to 3D printers and laser cutters.”

The benefit of participating in the program, she says, was “having the opportunity to not just do the academic side of STEM but also to really get to play around, get your hands dirty, and figure out what you’re doing.”

“Looking back,” she adds, “there are so many parallels between what I’ve actually had to do as a college student, and having that knowledge from the Summer Institute has really been great.”

She was inspired to volunteer as a teaching assistant because, she says, “I know I definitely want to teach, have the opportunity to interact with kids, and also be part of the future of STEM.”

More than 90 students attended the program at Rice. They visited Space Center Houston, where former astronauts talked to them about the history of space exploration.

Participants also were treated to presentations by guest speakers including IEEE Senior Member Phil Bautista, the founder of Bull Creek Data, a consulting company that provides technical solutions; IEEE Senior Member Christopher Sanderson, chair of the IEEE Region 5 Houston Section; and James Burroughs, a standards manager for Siemens in Atlanta. Burroughs, who spoke at all three TESI events this year, provided insight on overcoming barriers to do the important work of an engineer.

Learning about transit systems and careers

The University of Pennsylvania, in Philadelphia, hosted the East Coast TESI event this year. Students were treated to a field trip to the Southeastern Pennsylvania Transportation Association (SEPTA), one of the largest transit systems in the country. Engineers from AECOM, a global infrastructure consulting firm with offices in Philadelphia that worked closely with SEPTA on its most recent station renovation, collaborated with IEEE to host the trip.

The benefit of participating in the program was “having the opportunity to not just do the academic side of STEM but also to really get to play around, get your hands dirty, and figure out what you’re doing.” — Natalie Ghannad

Participants also heard from guest speakers including Api Appulingam, chief development officer of the Philadelphia International Airport, who told the students the inspiring story of her career.

Guest speakers from Google and Meta

Students who attended the TESI camp at the University of San Diego visited Qualcomm. Hosted by the IEEE Region 6 director, Senior Member Kathy Herring Hayashi, they learned about cutting-edge technology and toured the Qualcomm Museum.

Students also heard from guest speakers including IEEE Member Andrew Saad, an engineer at Google; Gautam Deryanni, a silicon validation engineer at Meta; Kathleen Kramer, 2025 IEEE president and a professor of electrical engineering at the University of San Diego; as well as Burroughs.

“I enjoyed the opportunity to meet new, like-minded people and enjoy fun activities in the city, as well as get a sense of the dorm and college life,” one participant said.

Hands-on projects

In addition to field trips and guest speakers, participants at each location worked on several hands-on projects highlighting the engineering design process. In the toxic popcorn challenge, the students designed a process to safely remove harmful kernels. Students tackling the bridge challenge designed and built a span out of balsa wood and glue, then tested its strength by gradually adding weight until it failed. The glider challenge gave participants the tools and knowledge to build and test their aircraft designs.

One participant applauded the hands-on activities, saying, “All of them gave me a lot of experience and helped me have a better idea of what engineering field I want to go in. I love that we got to participate in challenges and not just listen to lectures—which can be boring.”

The students also worked on a weeklong sparking solutions challenge. Small teams identified a societal problem, such as a lack of clean water or limited mobility for senior citizens, then designed a solution to address it. On the last day of camp, they pitched their prototypes to a team of IEEE members that judged the projects based on their originality and feasibility. Each student on the winning teams at each location were awarded the programmable Mech-5 robot.

Twenty-nine scholarships were awarded with funding from the IEEE Foundation. IEEE societies that donated to the cause were the IEEE Computational Intelligence Society, the IEEE Computer Society, the IEEE Electronics Packaging Society, the IEEE Industry Applications Society, the IEEE Oceanic Engineering Society, the IEEE Power & Energy Society, the IEEE Power Electronics Society, the IEEE Signal Processing Society, and the IEEE Solid-State Circuits Society.

Wireless Innovator Gerard J. “Jerry” Foschini Remembered



IEEE Life Fellow Gerard J. “Jerry” Foschini, a Bell Labs researcher for more than 50 years, died on 17 September, 2023, at the age of 83.

Foschini made groundbreaking contributions to the field of wireless communications that improved the quality of networks and paved the way for several important IEEE standards.

In the early 1990s he helped to develop the multiple-input multiple-output (MIMO) method of using antennas to increase radio link capacity. A few years later he introduced the Bell Laboratories Layered Space-Time (BLAST) transceiver architecture, which advanced antenna systems by allowing multiple data streams to be transmitted on a single frequency.

Foschini’s work is set to be honored in Los Angeles at the Italian American Museum’s “Creative Minds” exhibit, which is designed to spotlight inventors and innovators. The exhibit is scheduled to run at the museum from next month until next October.

Decades of innovation at Bell Labs

Foschini received a bachelor’s degree in electrical engineering in 1961 from the New Jersey Institute of Technology, in Newark. He earned a master’s degree in EE in 1963 from New York University and went on to earn a Ph.D. in EE in 1967 from Stevens Institute of Technology, in Hoboken, N.J.

He began his career in 1961 as a researcher at Bell Labs, in Holmdel, N.J. (Bell Labs headquarters moved to nearby Murray Hill in 1967, but the Wireless Communications Lab remained in Holmdel.)

Gerard Foschini, as a young adult, surrounded by male colleagues at Bell Labs. Gerard Foschini [bottom row, middle] and his colleagues Larry Greenstein [top row], Len Cimini [bottom row, left], and Isam Habbab at Bell Labs in Holmdel, N.J.Darlene Foschini-Field

MIMO was one of his most well-known breakthroughs. Developed in the late 1980s, the technology became an essential element of wireless communication standards including IEEE 802.11n and IEEE 802.16 (known commercially as WiMAX). MIMO arrays can be found in many cellular and Wi-Fi systems.

In the mid-1990s Foschini helped develop BLAST. He coauthored the seminal 1998 paper “V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel” with fellow Bell Labs researchers Glenn Golden, Reinaldo A. Valenzuela, and Peter Wolniansky. A simplified version known as V-BLAST is a multiantenna communication technique that detects and repropagates the strongest signal and eliminates interference, enhancing the data quality of wireless networks.

Foschini retired in 2013.

An often-cited researcher

During his career, Foschini wrote more than 100 published works and was awarded 14 patents related to wireless communications technology. According to the Institute for Scientific Information (now part of Clarivate), Foschini was in the top 0.5 of 1 percent of publishing researchers. His works were cited more than 50,000 times.

He was elected to the U.S. National Academy of Engineering in 2009 for “contributions to the science and technology of wireless communications with multiple antennas for transmission and receiving.” He was honored with the 2008 IEEE Alexander Graham Bell Medal and the 2006 IEEE Eric E. Sumner Award.

A tribute published on the IEEE Communications Society website says:
“Although Jerry was modest and unassuming, his brilliance and deep insight became apparent as soon as one engaged him in a technical conversation. His kindness and grace permeated all his interactions. A great mentor to all his colleagues, Jerry was particularly inspiring to young researchers, eager to hear about their work and provide them with guidance and encouragement.”

A Picture Is Worth 4.6 Terabits



Clark Johnson says he has wanted to be a scientist ever since he was 3. At age 8, he got bored with a telegraph-building kit he received as a gift and repurposed it into a telephone. By age 12, he set his sights on studying physics because he wanted to understand how things worked at the most basic level.

“I thought, mistakenly at the time, that physicists were attuned to the left ear of God,” Johnson says.

Clark Johnson


Employer

Wave Domain

Title

CFO

Member grade

Life Fellow

After graduating at age 19 with a bachelor’s degree in physics in 1950 from the University of Minnesota Twin Cities, he was planning to go to graduate school when he got a call from the head of the physics section at 3M’s R&D laboratory with a job offer. Tempted by the promise of doing things with his own hands, Johnson accepted the role of physicist at the company’s facility in St. Paul, Minn. Thus began his more than seven-decade-long career as an electrical engineer, inventor, and entrepreneur—which continues to this day.

Johnson, an IEEE Life Fellow, is an active member of the IEEE Magnetics Society and served as its 1983–1984 president.

He was on the science committee of the U.S. House of Representatives, and then was recruited by the Advanced Research Projects Agency (ARPA) and assigned to assist in MIT’s Research Program on Communications Policy, where he contributed to the development of HDTV.

He went on to help found Wave Domain in Monson, Mass. Johnson and his Wave Domain collaborators have been granted six patents for their latest invention, a standing-wave storage (SWS) system that houses archival data in a low-energy-use, tamper-proof way using antiquated photography technology.

3M, HDTV, and a career full of color

3M turned out to be fertile ground for Johnson’s creativity.

“You could spend 15 percent of your time working on things you liked,” he says. “The president of the company believed that new ideas sort of sprung out of nothing, and if you poked around, you might come across something that could be useful.”

Johnson’s poking around led him to contribute to developing an audio tape cartridge and Scotchlite, the reflective film seen on roads, signs, and more.

In 1989 he was tapped to be an IEEE Congressional Fellow. He chose to work with Rep. George Brown Jr., a Democrat representing the 42nd district in central California. Brown was a ranking member of the House committee on science, space, and technology, which oversees almost all non-defense and non-health related research.

“It was probably the most exciting year of my entire life,” Johnson says.

While on the science committee, he met Richard Jay Solomon, who was associate director of MIT’s Research Program on Communications Policy, testifying for the committee on video and telecom issues. Solomon’s background is diverse. He studied physics and electrical engineering in the early 1960s at Brooklyn Polytechnic and general science at New York University. Before becoming a research associate at MIT in 1969, he held a variety of positions. He ran a magazine about scientific photography, and he founded a business that provided consulting on urban planning and transportation. He authored four textbooks on transportation planning, three of which were published by the American Society of Civil Engineers. At the magazine, Solomon gained insights into arcane, long-forgotten 19th-century photographic processes that turned out to be useful in future inventions.

a man standing at the end of a brown and orange train car Johnson and Solomon bonded over their shared interest in trains. Johnson’s refurbished Pullman car has traveled some 850,000 miles across the continental U.S.Clark Johnson

Johnson and Solomon clicked over a shared interest in trains. At the time they met, Johnson owned a railway car that was parked in the District of Columbia’s Union Station, and he used it to move throughout North America, traveling some 850,000 miles before selling the car in 2019. Johnson and Solomon shared many trips aboard the refurbished Pullman car.

Now they are collaborators on a new method to store big data in a tamperproof, zero-energy-cost medium.

Conventional storage devices such as solid-state drives and hard disks take energy to maintain, and they might degrade over time, but Johnson says the technique he, Solomon, and collaborators developed requires virtually no energy and can remain intact for centuries under most conditions.

Long before collaborating on their latest project, Johnson and Solomon teamed up on another high-profile endeavor: the development of HDTV. The project arose through their work on the congressional science committee.

In the late 1980s, engineers in Japan were working on developing an analog high-definition television system.

“My boss on the science committee said, ‘We really can’t let the Japanese do this. There’s all this digital technology and digital computers. We’ve got to do this digitally,’” Johnson says.

That spawned a collaborative project funded by NASA and ARPA (the predecessor of modern-day DARPA). After Johnson’s tenure on the science committee ended, he and Solomon joined a team at MIT that participated in the collaboration. As they developed what would become the dominant TV technology, Johnson and Solomon became experts in optics. Working with Polaroid, IBM, and Philips in 1992, the team demonstrated the world’s first digital, progressive-scanned, high-definition camera at the annual National Association of Broadcasters conference.

A serendipitous discovery

Around 2000, Clark and Solomon, along with a new colleague, Eric Rosenthal, began working as independent consultants to NASA and the U.S. Department of Defense. Rosenthal had been a vice president of research and development at Walt Disney Imagineering and general manager of audiovisual systems engineering at ABC television prior to joining forces with Clark and Solomon.

While working on one DARPA-funded project, Solomon stumbled upon a page in a century-old optics textbook that caught his eye. It described a method developed by noted physicist Gabriel Lippmann for producing color photographs. Instead of using film or dyes, Lippmann created photos by using a glass plate coated with a specially formulated silver halide emulsion.

When exposed to a bright, sunlit scene, the full spectrum of light reflected off a mercury-based mirror coating on the back of the glass. It created standing waves inside the emulsion layer of the colors detected. The silver grains in the brightest parts of the standing wave became oxidized, as if remembering the precise colors they saw. (It was in stark contrast to traditional color photographs and television, which store only red, green, and blue parts of the spectrum.) Then, chemical processing turned the oxidized silver halide grains black, leaving the light waves imprinted in the medium in a way that is nearly impossible to tamper with. Lippmann received the 1908 Nobel Prize in Physics for his work.

Lippmann’s photography technique did not garner commercial success, because there was no practical way to duplicate the images or print them. And at the time, the emulsions needed the light to be extremely bright to be properly imprinted in the medium.

Nevertheless, Solomon was impressed with the durability of the resulting image. He explained the process to his colleagues, who recognized the possibility of using the technique to store information for archival purposes. Johnson saw Lippmann’s old photographs at the Museum for Photography, in Lausanne, Switzerland, where he noticed that the colors appeared clear and intense despite being more than a century old.

The silver halide method stuck with Solomon, and in 2013 he and Johnson returned to Lippmann’s emulsion photography technique.

“We got to talking about how we could take all this information we knew about color and use it for something,” Johnson says.

Data in space and on land

While Rosenthal was visiting the International Space Station headquarters in Huntsville, Ala., in 2013, a top scientist said, “‘The data stored on the station gets erased every 24 hours by cosmic rays,’” Rosenthal recalls. “‘And we have to keep rewriting the data over and over and over again.’” Cosmic rays and solar flares can damage electronic components, causing errors or outright erasures on hard disks and other traditional data storage systems.

Rosenthal, Johnson, and Solomon knew that properly processed silver halide photographs would be immune to such hazards, including electromagnetic pulses from nuclear explosions. The team examined Lippmann’s photographic emulsion anew.

Solomon’s son, Brian Solomon, a professional photographer and a specialist in making photographic emulsions, also was concerned about the durability of conventional dye-based color photographs, which tend to start fading after a few decades.

The team came up with an intriguing idea: Given how durable Lippmann’s photographs appeared to be, what if they could use a similar technique—not for making analog images but for storing digital data? Thus began their newest engineering endeavor: changing how archival data—data that doesn’t need to be overwritten but simply preserved and read occasionally—is stored.

black text with red and green wavy lines and black dots in a gray box with another gray box next to it The standing wave storage technique works by shining bright LEDs onto a specially formulated emulsion of silver grains in gelatin. The light reflects off the substrate layer (which could be air), and forms standing waves in the emulsion. Standing waves oxidize the silver grains at their peaks, and a chemical process turns the oxidized silver grains black, imprinting the pattern of colors into the medium. Wave Domain

Conventionally stored data sometimes is protected by making multiple copies or continuously rewriting it, Johnson says. The techniques require energy, though, and can be labor-intensive.

The amount of data that needs to be stored on land is also growing by leaps and bounds. The market for data centers and other artificial intelligence infrastructure is growing at an annual rate of 44 percent, according to Data Bridge Market Research. Commonly used hard drives and solid-state drives consume some power, even when they are not in use. The drives’ standby power consumption varies between 0.05 and 2.5 watts per drive. And data centers contain an enormous number of drives requiring tremendous amounts of electricity to keep running.

Johnson estimates that about 25 percent of the data held in today’s data centers is archival in nature, meaning it will not need to be overwritten.

The ‘write once, read forever’ technology

The technology Johnson, Solomon, and their collaborators have developed promises to overcome the energy requirements and vulnerabilities of traditional data storage for archival applications.

The design builds off of Lippmann’s idea. Instead of taking an analog photograph, the team divided the medium into pixels. With the help of emulsion specialist Yves Gentet, they worked to improve Lippmann’s emulsion chemistry, making it more sensitive and capable of storing multiple wavelengths at each pixel location. The final emulsion is a combination of silver halide and extremely hardened gelatin. Their technique now can store up to four distinct narrow-band, superimposed colors in each pixel.

black text with squares with red, green, blue, yellow and pink in them with another large rectangle below with a spectrum of the rainbow in colors The standing wave storage technique can store up to four colors out of a possible 32 at each pixel location. This adds up to an astounding storage capacity of 4.6 terabits (or roughly 300 movies) in the area of a single photograph. Wave Domain

“The textbooks say that’s impossible,” Solomon says, “but we did it, so the textbooks are wrong.”

For each pixel, they can choose four colors out of a possible 32 to store.

That amounts to more than 40,000 possibilities. Thus, the technique can store more than 40,000 bits (although the format need not be binary) in each 10-square-micrometer pixel, or 4.6 terabits in a 10.16 centimeter by 12.7 cm modified Lippmann plate. That’s more than 300 movies’ worth of data stored in a single picture.

To write on the SWS medium, the plate—coated with a thin layer of the specially formulated emulsion—is exposed to light from an array of powerful color LEDs.

That way, the entire plate is written simultaneously, greatly reducing the writing time per pixel.

The plate then gets developed through a chemical process that blackens the exposed silver grains, memorizing the waves of color it was exposed to.

Finally, a small charged-couplet-device camera array, like those used in cellphones, reads out the information. The readout occurs for the entire plate at once, so the readout rate, like the writing rate, is fast.

“The data that we read is coming off the plate at such a high bandwidth,” Solomon says. “There is no computer on the planet that can absorb it without some buffering.”

The entire memory cell is a sandwich of the LED array, the photosensitive plate, and the CCD. All the elements use off-the-shelf parts.

“We took a long time to figure out how to make this in a very inexpensive, reproducible, quick way,” Johnson says. “The idea is to use readily available parts.” The entire storage medium, along with its read/write infrastructure, is relatively inexpensive and portable.

To test the durability of their storage method, the team sent their collaborators at NASA some 150 samples of their SWS devices to be hung by astronauts outside the International Space Station for nine months in 2019. They then tested the integrity of the stored data after the SWS plates were returned from space, compared with another 150 plates stored in Rosenthal’s lab on the ground.

“There was absolutely zero degradation from nine months of exposure to cosmic rays,” Solomon says. Meanwhile, the plates on Rosenthal’s desk were crawling with bacteria, while the ISS plates were sterile. Silver is a known bactericide, though, so the colors were immune, Solomon says.

Their most recent patent, granted earlier this year, describes a method of storing data that requires no power to maintain when not actively reading or writing data. Team members say the technique is incorruptible: It is immune to moisture, solar flares, cosmic rays, and other kinds of radiation. So, they argue, it can be used both in space and on land as a durable, low-cost archival data solution.

Passing on the torch

The new invention has massive potential applications. In addition to data centers and space applications, Johnson says, scientific enterprises such as the Rubin Observatory being built in Chile, will produce massive amounts of archival data that could benefit from SWS technology.

“It’s all reference data, and it’s an extraordinary amount of data that’s being generated every week that needs to be kept forever,” Johnson says.

Johnson says, however, that he and his team will not be the ones to bring the technology to market: “I’m 94 years old, and my two partners are in their 70s and 80s. We’re not about to start a company.”

He is ready to pass on the torch. The team is seeking a new chief executive to head up Wave Domain, which they hope will continue the development of SWS and bring it to mass adoption.

Johnson says he has learned that people rarely know which new technologies will eventually have the most impact. Perhaps, though few people are aware of it now, storing big data using old photographic technology will become an unexpected success.

U.S. Engineers’ Salaries Up in 2023



There’s good earnings news for U.S. members: Salaries are rising. Base salaries increased by about 5 percent from 2022 to 2023, according to the IEEE-USA 2024 Salary and Benefits Survey Report.

Last year’s report showed that inflation had outpaced earnings growth but that’s not the case this year.

In current dollars, the median income of U.S. engineers and other tech professionals who are IEEE members was US $174,161 last year, up about 5 percent from $169,000 in 2022, excluding overtime pay, profit sharing, and other supplemental earnings. Unemployment fell to 1.2 percent in this year’s survey, down from 1.4 percent in the previous year.

As with prior surveys, earned income is measured for the year preceding the survey’s date of record—so the 2024 survey reports income earned in 2023.

To calculate the median salary, IEEE-USA considered only respondents who were tech professionals working full time in their primary area of competence—a sample of 4,192 people.

chart visualization

Circuits and device engineers earn the most

Those specializing in circuits and devices earned the highest median income, $196,614, followed by those working in communications ($190,000) and computers/software technology ($181,000).

Specific lucrative subspecialties include broadcast technology ($226,000), image/video ($219,015), and hardware design or hardware support ($215,000).

Engineers in the energy and power engineering field earned the lowest salary: $155,000.

Higher education affects how well one is paid. On average, those with a Ph.D. earned the highest median income: $193,636. Members with a master’s degree in electrical engineering or computer engineering reported a salary of $182,500. Those with a bachelor’s degree in electrical engineering or computer engineering earned a median income of $159,000.

Earning potential also depends on geography within the United States. Respondents in IEEE Region 6 (Western U.S.) fared substantially better than those in Region 4 (Central U.S.), earning nearly $48,500 more on average. However, the report notes, the cost of living in the western part of the country is significantly higher than elsewhere.

The top earners live in California, Maryland, and Oregon, while those earning the least live in Arkansas, Nebraska, and South Carolina.

chart visualization

Academics are among the lowest earners

Full professors earned an average salary of $190,000, associate professors earned $118,000, and assistant professors earned $104,500.

Almost 38 percent of the academics surveyed are full professors, 16.6 percent are associate professors, and 11.6 percent are assistant professors. About 10 percent of respondents hold a nonteaching research appointment. Nearly half (46.8 percent) are tenured, and 10.7 percent are on a tenure track.

Gender and ethnic gaps widen

The gap between women’s and men’s salaries increased. Even considering experience levels, women earned $30,515 less than their male counterparts.

chart visualization

The median primary income is highest among Asian/Pacific Islander technical professionals, at $178,500, followed by White engineers ($176,500), Hispanic engineers ($152,178), African-American engineers ($150,000), and Native American/Alaskan Native engineers ($148,000). The salary gap between Black engineers and the average salary reported is $3,500 more than in last year’s report.

chart visualization

Asians and Pacific Islanders are the largest minority group, at 14.4 percent. Only 5 percent of members are Hispanic, 2.6 percent are African Americans, and American Indians/Alaskan Natives account for 0.9 percent of the respondents.

More job satisfaction

According to the report, overall job satisfaction is higher than at any time in the past 10 years. Members reported that their work was technically challenging and meaningful to their company. On the whole, they weren’t satisfied with advancement opportunities or their current compensation, however.

The 60-page report is available for purchase at the member price of US $125. Nonmembers pay $225.

chart visualization

How IEEE Ensures Quality In Engineering Education



For IEEE, the accreditation of engineering programs is important. Accreditation is vital to the future of the profession, ensuring that the graduates are prepared to practice and establishing a link to a sustainable future with a talented pool of engineering and technology professionals.

IEEE’s involvement in the accreditation process ensures that students who graduate from approved programs have demonstrated the skills and abilities established by the criteria.

Technical professional associations such as IEEE are involved because it gives them a voice in the educational process for programs in their fields of interest. Accredited programs demonstrate to both prospective students and employers that the educational institutions meet a quality standard. For graduating students, it verifies that they’ve attended a quality program, and it supports their entry into the profession.

How does program accreditation work?

Accreditation is not a grade, score, or ranking. Programs are evaluated against a set of approved criteria to ensure that certain educational objectives are met.

IEEE plays a significant role in establishing the criteria and evaluating programs. The goal is to ensure the accredited educational programs have attained a level of performance in areas that meet or exceed minimum standards developed by experts in the field.

“My experiences have been very rewarding, and I hope to continue to have a positive impact on the quality of engineering education.” —Sarah Rajala

An accrediting body establishes the criteria. ABET, formerly known as the Accreditation Board for Engineering and Technology, is the body deciding the criteria in the United States. It is a nonprofit, nongovernmental organization that evaluates programs in the applied sciences, engineering, computing, and technology. IEEE is a founding member of the organization.

IEEE provides ABET with expert volunteers who serve as program evaluators, or PEVs. They visit institutions to review their programs using the approved criteria to discern whether the schools meet the standard. IEEE does not directly grant accreditation to an institution; ABET does. There are currently 35 technical professional associations that are member societies, including ASME, ASCE, and ASEE. Representatives from IEEE and other societies helped develop the criteria used to conduct the evaluations.

Recognizing the importance of program accreditation, many countries have established bodies and other processes to develop educational criteria. ABET also serves as the accrediting body for a growing number of programs outside the United States.

Become an evaluator

IEEE currently has more than 300 members serving as program evaluators but more are always needed. Becoming an evaluator provides a professional development opportunity, furthers IEEE’s mission, and supports the profession.

“My experiences have been very rewarding, and I hope to continue to have a positive impact on the quality of engineering education,” says IEEE Member Sarah Rajala, who is the 2024–2025 ABET president. A professor emeritus at Iowa State University, in Ames, Rajala has served as a program evaluator and assignment coordinator for IEEE’s Committee on Engineering Accreditation Activities.

IEEE accepts evaluator applications from its members in engineering and engineering technology. Each area has specific requirements, and applicants must choose one as their field of expertise. To learn more, go to the Program Evaluator Opportunities page on IEEE’s website.

Other bodies involved in engineering accreditation also need evaluators.

Mary Ellen Randall Is 2025 IEEE President-Elect



IEEE Fellow Mary Ellen Randall has been elected as the 2025 IEEE president-elect. She will begin serving as president on 1 January 2026.

Randall, who was nominated by the IEEE Board of Directors, received 16,389 votes in the election. Fellow S.K. Ramesh received 10,647 votes and Fellow John P. Verboncoeur received 9,412.

Randall’s Pledge to Members


  1. Institute innovative products and services to ensure our mutually successful future.
  2. Engage stakeholders (members, partners, and communities) to unite on a comprehensive vision.
  3. Expand technology advancement and adoption throughout the world.
  4. Execute with excellence, ethics, and financial responsibility.
  5. Lead by example with enthusiasm and integrity.

At press time, the results were unofficial until the IEEE Board of Directors accepts the IEEE Teller’s Committee report in November.

Randall founded Ascot Technologies in 2000 in Cary, N.C. Ascot develops enterprise applications using mobile data delivery technologies. She serves as the award-winning company’s CEO.

Before launching Ascot, she worked for IBM, where she held several technical and managerial positions in hardware and software development, digital video chips, and test design automation. She routinely managed international projects.

Randall has served as IEEE treasurer, director of IEEE Region 3, chair of IEEE Women in Engineering, and vice president of IEEE Member and Geographic Activities.

In 2016 she founded the IEEE MOVE (Mobile Outreach using Volunteer Engagement) program to assist with disaster relief efforts and for science, technology, engineering, and math educational purposes.

The IEEE-Eta Kappa Nu honor society member has received several honors including the 2020 IEEE Haraden Pratt Award, which recognizes outstanding volunteer service to IEEE.

She was named a top businesswoman in North Carolina’s Research Triangle Park area, and she made the 2003 Business Leader Impact 100 list.

To find out who was chosen as IEEE-USA president-elect, IEEE Technical Activities vice president-elect, and more, read the full annual election results.

Tips for Improving Workplace Communication Skills



This article is part of our exclusive career advice series in partnership with the IEEE Technology and Engineering Management Society.

Poor communication causes problems, delays, and failures in teams and organizations. As engineers who want to communicate what we are working on and why it matters, we need to work on getting better at it.

That might seem obvious, but how we communicate often depends on whom we communicate with. The method of communication, as well as the content, differ if you’re talking with an executive, a peer, or someone you lead.

As a career expert, I can help you better communicate at different levels of your organization, whether by email, in person, on the phone, or virtually.

This is not a “one size fits all” model. Individuals at all levels have varying preferences for style, cadence, length, and mode. It’s a good practice to be sensitive to such differences.

Communicating “up” to leaders

Let’s start with communicating with leaders and more senior managers within an organization.

First, consider the purpose of communicating with them, such as:

  • Making them aware of your work for strategic decisions.
  • The impact of your project on teams.
  • Reporting progress on a strategic initiative.

Such leaders don’t want all the details. They often don’t have the time, or they might not understand the specifics, especially if the topic is deeply technical.

Context and impact, however, are important to them. How does what you’re sharing fit into the company as a whole? Will it affect other developments? What does it mean for your team and others moving forward?

Give the leaders what they need. Be brief and cogent.

For example, I had a coaching client who was working on a large initiative to shift technology platforms used for the storing and distribution of their digital products. It was a big deal for the company, as everything else they delivered went back to the platform. When speaking to upper management, they mostly had to focus on the timeline, budget, and reliability/performance expectations as they went through the project so that the leadership team could make decisions based on that information.

Your role is to help the client make informed decisions. You can be proactive in communicating with senior leaders when appropriate, and you should ensure you respond to questions and requests as soon and clearly as possible.

What and how you communicate will shape the leaders’ perception of you, with potential implications on your performance reviews and future opportunities.

Communicating across levels

At this level, you frequently communicate with peers, stakeholders, clients, or other collaborators.

Beware of the curse of knowledge. If you believe you know more than they do, it can be difficult to look at things from their perspective and help them understand because you already have things mapped out in your head. Communicating with peers isn’t just about sharing information. You can, and should, seek information and respond to requests and perspectives that others have shared. The process of give and take is important in a collegial environment.

Consider what you need to communicate:

  • What does the client need to know to make good decisions?
  • What input do you need to effectively collaborate?
  • Is there a background or context the client needs to understand?
  • Do you have the right people involved?

Going back to the example of my client above, when he was working with his peers he mostly focused on communicating and solving around interactions/dependencies. It allows the group members to make sure they all could deliver together and remove critical roadblocks to the progress of other teams.

Working collaboratively allows you to get the best out of everyone, rather than making unilateral decisions and moving forward on your own. Engaging team members in a constructive and supportive way will help you be a better colleague and partner, with tangible and intangible benefits.

Communicating with those you lead

Communicating “down” does not mean talking down to anyone. It’s just a way of communicating with those you lead, formally or informally. They don’t want to be left in the dark. They need to have context and understanding of not just what they are doing but also why.

When communicating with your staff:

  • Help them see the big picture and understand how their actions contribute to larger goals and initiatives.
  • Share context and the reasoning behind decisions. Transparency is important to avoid false stories and incorrect assumptions. That said, there will be occasions when you won’t be able to give the staff the full picture.
  • Get their input frequently; don’t just give orders. Your staff members are crucial parts of the organization, and they will have useful input and ideas. Listen to them and help them feel heard and valued.

When my client was interfacing with his team, he helped his colleagues see why they were engaged in the technology transition project, what each person needed to do, and when the job needed to be completed. It helped everyone feel connected to the purpose of their work, and it created a team commitment around deliverables.

Effective communication at this level is one of the most important ways to boost morale, cultivate respect, and influence organizational culture.

Take intentional action

Look at each of your conversations at work and think about what communication level and style is needed for each situation. Perhaps it’s giving a presentation to leaders or taking on a project that will have you collaborating with new team members. As you move through the experience, spend some time reflecting on what is working. Are you growing your relationships with others? What could be improved?

Do something outside your comfort zone to help you practice your communication skills.

Whatever it is, make sure it stretches your skills.

Happy IEEE Day!



Happy IEEE Day!

IEEE Day commemorates the first gathering of IEEE members to share their technical ideas in 1884.

First celebrated in 2009, IEEE Day marks its 15th anniversary this year.

Worldwide celebrations demonstrate the ways thousands of IEEE members in local communities join together to collaborate on ideas that leverage technology for a better tomorrow.


Celebrate IEEE Day with colleagues from IEEE Sections, Student Branches, Affinity groups, and Society Chapters. Events happen both virtually and in person all around the world.

Join the celebration around the world!

Every year, IEEE members from IEEE Sections, Student Branches, Affinity groups, and Society Chapters join hands to celebrate IEEE Day. Events happen both virtually and in person. IEEE Day celebrates the first time in history when engineers worldwide gathered to share their technical ideas in 1884.

View events→

Special Activities & Offers for Members

Check out our special offers and activities for IEEE members and future members. And share these with your friends and colleagues.

View offers→

Compete in contests and win prizes!

Have some fun and compete in the photo and video contests. Get your phone and camera ready when you attend one of the events. This year we will have both Photo and Video Contests. You can submit your entries in STEM, technical, humanitarian and social categories.

View contests→

Leading Educator Weighs in on University DEI Program Cuts



Many U.S. university students returning to campus this month will find their school no longer has a diversity, equity, and inclusion program. More than 200 universities in 30 states so far this year have eliminated, cut back, or changed their DEI efforts, according to an article in The Chronicle of Higher Education.

It is happening at mostly publicly funded universities, because state legislators and governors are enacting laws that prohibit or defund DEI programs. They’re also cutting budgets and sometimes implementing other measures that restrict diversity efforts. Some colleges have closed their DEI programs altogether to avoid political pressure.

The Institute asked Andrea J. Goldsmith, a top educator and longtime proponent of diversity efforts within the engineering field and society, to weigh in.

Goldsmith shared her personal opinion about DEI with The Institute, not as Princeton’s dean of engineering and applied sciences. A wireless communications pioneer, she is an IEEE Fellow who launched the IEEE Board of Directors Diversity and Inclusion Committee in 2019 and once served as its chair.

She received this year’s IEEE Mulligan Education Medal for educating, mentoring, and inspiring generations of students, and for authoring pioneering textbooks in advanced digital communications.

“For the longest time,” Goldsmith says, “there was so much positive momentum toward improving diversity and inclusion. And now there’s a backlash, which is really unfortunate, but it’s not everywhere.” She says she is proud of her university’s president, who has been vocal that diversity is about excellence and that Princeton is better because its students and faculty are diverse.

In the interview, Goldsmith spoke about why she thinks the topic has become so controversial, what measures universities can take to ensure their students have a sense of belonging, and what can be done to retain female engineers—a group that has been underrepresented in the field.

The Institute: What do you think is behind the movement to dissolve DEI programs?

Goldsmith: That’s a very complex question, and I certainly don’t have the answer.

It has become a politically charged issue because there’s a notion that DEI programs are really about quotas or advancing people who are not deserving of the positions they have been given. Part of the backlash also was spurred by the Oct. 7 attack on Israel, the war in Gaza, and the protests. One notion is that Jewish students are also a minority that needs protection, and why is it that DEI programs are only focused on certain segments of the population as opposed to diversity and inclusion for everyone, for people with all different perspectives, and those who are victims or subject to explicit bias, implicit bias, or discrimination? I think that these are legitimate concerns, and that programs around diversity and inclusion should be addressing them.

The goal of diversity and inclusion is that everybody should be able to participate and reach their full potential. That should go for every profession and, in particular, every segment of the engineering community.

Also in the middle of this backlash is the U.S. Supreme Court’s 2023 decision that ended race-conscious affirmative action in college admissions—which means that universities cannot take diversity into account explicitly in their admission of students. The decision in and of itself only affects undergraduate admissions, but it has raised concerns about broadening the decision to faculty hiring or for other kinds of programs that promote diversity and inclusion within universities and private companies.

I think the Supreme Court’s decision, along with the political polarization and the recent protests at universities, have all been pieces of a puzzle that have come together to paint all DEI programs with a broad brush of not being about excellence and lowering barriers but really being about promoting certain groups of people at the expense of others.

How might the elimination of DEI programs impact the engineering profession specifically?

Goldsmith: I think it depends on what it means to eliminate DEI programs. Programs to promote the diversity of ideas and perspectives in engineering are essential for the success of the profession. As an optimist, I believe we should continue to have programs that ensure our profession can bring in people with diverse perspectives and experiences.

Does that mean that every DEI program in engineering companies and universities needs to evolve or change? Not necessarily. Maybe some programs do because they aren’t necessarily achieving the goal of ensuring that diverse people can thrive.

“My work in the profession of engineering to enhance diversity and inclusion has really been about excellence for the profession.”

We need to be mindful of the concerns that have been raised about DEI programs. I don’t think they are completely unfounded.

If we do the easy thing—which is to just eliminate the programs without replacing them with something else or evolving them—then it will hurt the engineering profession.

The metrics being used to assess whether these programs are achieving their goals need to be reviewed. If they are not, the programs need to be improved. If we do that, I think DEI programs will continue to positively impact the engineering profession.

For universities that have cut or reduced their programs, what are some other ways to make sure all students have a sense of belonging?

Goldsmith: I would look at what other initiatives could be started that would have a different name but still have the goal of ensuring that students have a sense of belonging.

Long before DEI programs, there were other initiatives within universities that helped students figure out their place within the school, initiated them into what it means to be a member of the community, and created a sense of belonging through various activities. These include prefreshman and freshman orientation programs, student groups and organizations, student-led courses (with or without credit), eating clubs, fraternities, and sororities, to name just a few. I am referring here to any program within a university that creates a sense of community for those who participate—which is a pretty broad category of programs.

These continue, but they aren’t called DEI programs. They’ve been around for decades, if not since the university system was founded.

How can universities and companies ensure that all people have a good experience in school and the workplace?

Goldsmith: This year has been a huge challenge for universities, with protests, sit-ins, arrests, and violence.

One of the things I said in my opening remarks to freshmen at the start of this semester is that you will learn more from people around you who have different viewpoints and perspectives than you will from people who think like you. And that engaging with people who disagree with you in a respectful and scholarly way and being open to potentially changing your perspective will not only create a better community of scholars but also better prepare you for postgraduation life, where you may be interacting with a boss, coworkers, family, and friends who don’t agree with you.

Finding ways to engage with people who don’t agree with you is essential for engaging with the world in a positive way. I know we don’t think about that as much in engineering because we’re going about building our technologies, doing our equations, or developing our programs. But so much of engineering is collaboration and understanding other people, whether it’s your customers, your boss, or your collaborators.

I would argue everyone is diverse. There’s no such thing as a nondiverse person, because no two people have the exact same set of experiences. Figuring out how to engage with people who are different is essential for success in college, grad school, your career, and your life.

I think it’s a bit different in companies, because you can fire someone who does a sit-in in the boss’s office. You can’t do that in universities. But I think workplaces also need to create an environment where diverse people can engage with each other beyond just what they’re working on in a way that’s respectful and intellectual.

Reports show that half of female engineers leave the high-tech industry because they have a poor work experience. Why is that, and what can be done to retain women?

Goldsmith: That is one of the harder questions facing the engineering profession. The challenges that women face are implicit, including sometimes explicit bias. In extreme cases, there are sexual and other kinds of harassment, and bullying. These egregious behaviors have decreased some. The Me Too movement raised a lot of awareness, but [poor behavior] still is far more prevalent than we want it to be. It’s very difficult for women who have experienced that kind of egregious and illegal behavior to speak up. For example, if it’s their Ph.D. advisor, what does that mean if they speak up? Do they lose their funding? Do they lose all the research they’ve done? This powerful person can bad-mouth them for job applications and potential future opportunities.

So, it’s very difficult to curb these behaviors. However, there has been a lot of awareness raised, and universities and companies have put protections in place against them.

Then there’s implicit bias, where a qualified woman is passed over for a promotion, or women are asked to take meeting notes but not the men. Or a woman leader gets a bad performance review because she doesn’t take no for an answer, is too blunt, or too pushy. All these are things that male leaders are actually lauded for.

There is data on the barriers and challenges that women face and what universities and employers can do to mitigate them. These are the experiences that hurt women’s morale and upward mobility and, ultimately, make them leave the profession.

One of the most important things for a woman to be successful in this profession is to have mentors and supporters. So it is important to make sure that women engineers are assigned mentors at every stage, from student to senior faculty or engineer and everything in between, to help them understand the challenges they face and how to deal with them, as well as to promote and support them.

I also think having leaders in universities and companies recognize and articulate the importance of diversity helps set the tone from the top down and tends to mitigate some of the bias and implicit bias in people lower in the organization.

I think the backlash against DEI is going to make it harder for leaders to articulate the value of diversity, and to put in place some of the best practices around ensuring that diverse people are considered for positions and reach their full potential.

We have definitely taken a step backward in the past year on the understanding that diversity is about excellence and implementing best practices that we know work to mitigate the challenges that diverse people face. But that just means we need to redouble our efforts.

Although this isn’t the best time to be optimistic about diversity in engineering, if we take the long view, I think that things are certainly better than they were 20 or 30 years ago. And I think 20 or 30 years from now they’ll be even better.

Leading Educator Weighs in on University DEI Program Cuts



Many U.S. university students returning to campus this month will find their school no longer has a diversity, equity, and inclusion program. More than 200 universities in 30 states so far this year have eliminated, cut back, or changed their DEI efforts, according to an article in The Chronicle of Higher Education.

It is happening at mostly publicly funded universities, because state legislators and governors are enacting laws that prohibit or defund DEI programs. They’re also cutting budgets and sometimes implementing other measures that restrict diversity efforts. Some colleges have closed their DEI programs altogether to avoid political pressure.

The Institute asked Andrea J. Goldsmith, a top educator and longtime proponent of diversity efforts within the engineering field and society, to weigh in.

Goldsmith shared her personal opinion about DEI with The Institute, not as Princeton’s dean of engineering and applied sciences. A wireless communications pioneer, she is an IEEE Fellow who launched the IEEE Board of Directors Diversity and Inclusion Committee in 2019 and once served as its chair.

She received this year’s IEEE Mulligan Education Medal for educating, mentoring, and inspiring generations of students, and for authoring pioneering textbooks in advanced digital communications.

“For the longest time,” Goldsmith says, “there was so much positive momentum toward improving diversity and inclusion. And now there’s a backlash, which is really unfortunate, but it’s not everywhere.” She says she is proud of her university’s president, who has been vocal that diversity is about excellence and that Princeton is better because its students and faculty are diverse.

In the interview, Goldsmith spoke about why she thinks the topic has become so controversial, what measures universities can take to ensure their students have a sense of belonging, and what can be done to retain female engineers—a group that has been underrepresented in the field.

The Institute: What do you think is behind the movement to dissolve DEI programs?

Goldsmith: That’s a very complex question, and I certainly don’t have the answer.

It has become a politically charged issue because there’s a notion that DEI programs are really about quotas or advancing people who are not deserving of the positions they have been given. Part of the backlash also was spurred by the Oct. 7 attack on Israel, the war in Gaza, and the protests. One notion is that Jewish students are also a minority that needs protection, and why is it that DEI programs are only focused on certain segments of the population as opposed to diversity and inclusion for everyone, for people with all different perspectives, and those who are victims or subject to explicit bias, implicit bias, or discrimination? I think that these are legitimate concerns, and that programs around diversity and inclusion should be addressing them.

The goal of diversity and inclusion is that everybody should be able to participate and reach their full potential. That should go for every profession and, in particular, every segment of the engineering community.

Also in the middle of this backlash is the U.S. Supreme Court’s 2023 decision that ended race-conscious affirmative action in college admissions—which means that universities cannot take diversity into account explicitly in their admission of students. The decision in and of itself only affects undergraduate admissions, but it has raised concerns about broadening the decision to faculty hiring or for other kinds of programs that promote diversity and inclusion within universities and private companies.

I think the Supreme Court’s decision, along with the political polarization and the recent protests at universities, have all been pieces of a puzzle that have come together to paint all DEI programs with a broad brush of not being about excellence and lowering barriers but really being about promoting certain groups of people at the expense of others.

How might the elimination of DEI programs impact the engineering profession specifically?

Goldsmith: I think it depends on what it means to eliminate DEI programs. Programs to promote the diversity of ideas and perspectives in engineering are essential for the success of the profession. As an optimist, I believe we should continue to have programs that ensure our profession can bring in people with diverse perspectives and experiences.

Does that mean that every DEI program in engineering companies and universities needs to evolve or change? Not necessarily. Maybe some programs do because they aren’t necessarily achieving the goal of ensuring that diverse people can thrive.

“My work in the profession of engineering to enhance diversity and inclusion has really been about excellence for the profession.”

We need to be mindful of the concerns that have been raised about DEI programs. I don’t think they are completely unfounded.

If we do the easy thing—which is to just eliminate the programs without replacing them with something else or evolving them—then it will hurt the engineering profession.

The metrics being used to assess whether these programs are achieving their goals need to be reviewed. If they are not, the programs need to be improved. If we do that, I think DEI programs will continue to positively impact the engineering profession.

For universities that have cut or reduced their programs, what are some other ways to make sure all students have a sense of belonging?

Goldsmith: I would look at what other initiatives could be started that would have a different name but still have the goal of ensuring that students have a sense of belonging.

Long before DEI programs, there were other initiatives within universities that helped students figure out their place within the school, initiated them into what it means to be a member of the community, and created a sense of belonging through various activities. These include prefreshman and freshman orientation programs, student groups and organizations, student-led courses (with or without credit), eating clubs, fraternities, and sororities, to name just a few. I am referring here to any program within a university that creates a sense of community for those who participate—which is a pretty broad category of programs

These continue, but they aren’t called DEI programs. They’ve been around for decades, if not since the university system was founded.

How can universities and companies ensure that all people have a good experience in school and the workplace?

Goldsmith: This year has been a huge challenge for universities, with protests, sit-ins, arrests, and violence.

One of the things I said in my opening remarks to freshmen at the start of this semester is that you will learn more from people around you who have different viewpoints and perspectives than you will from people who think like you. And that engaging with people who disagree with you in a respectful and scholarly way and being open to potentially changing your perspective will not only create a better community of scholars but also better prepare you for postgraduation life, where you may be interacting with a boss, coworkers, family, and friends who don’t agree with you.

Finding ways to engage with people who don’t agree with you is essential for engaging with the world in a positive way. I know we don’t think about that as much in engineering because we’re going about building our technologies, doing our equations, or developing our programs. But so much of engineering is collaboration and understanding other people, whether it’s your customers, your boss, or your collaborators.

I would argue everyone is diverse. There’s no such thing as a nondiverse person, because no two people have the exact same set of experiences. Figuring out how to engage with people who are different is essential for success in college, grad school, your career, and your life.

I think it’s a bit different in companies, because you can fire someone who does a sit-in in the boss’s office. You can’t do that in universities. But I think workplaces also need to create an environment where diverse people can engage with each other beyond just what they’re working on in a way that’s respectful and intellectual.

Reports show that half of female engineers leave the high-tech industry because they have a poor work experience. Why is that, and what can be done to retain women?

Goldsmith: That is one of the harder questions facing the engineering profession. The challenges that women face are implicit, including sometimes explicit bias. In extreme cases, there are sexual and other kinds of harassment, and bullying. These egregious behaviors have decreased some. The Me Too movement raised a lot of awareness, but [poor behavior] still is far more prevalent than we want it to be. It’s very difficult for women who have experienced that kind of egregious and illegal behavior to speak up. For example, if it’s their Ph.D. advisor, what does that mean if they speak up? Do they lose their funding? Do they lose all the research they’ve done? This powerful person can bad-mouth them for job applications and potential future opportunities.

So, it’s very difficult to curb these behaviors. However, there has been a lot of awareness raised, and universities and companies have put protections in place against them.

Then there’s implicit bias, where a qualified woman is passed over for a promotion, or women are asked to take meeting notes but not the men. Or a woman leader gets a bad performance review because she doesn’t take no for an answer, is too blunt, or too pushy. All these are things that male leaders are actually lauded for.

There is data on the barriers and challenges that women face and what universities and employers can do to mitigate them. These are the experiences that hurt women’s morale and upward mobility and, ultimately, make them leave the profession.

One of the most important things for a woman to be successful in this profession is to have mentors and supporters. So it is important to make sure that women engineers are assigned mentors at every stage, from student to senior faculty or engineer and everything in between, to help them understand the challenges they face and how to deal with them, as well as to promote and support them.

I also think having leaders in universities and companies recognize and articulate the importance of diversity helps set the tone from the top down and tends to mitigate some of the bias and implicit bias in people lower in the organization.

I think the backlash against DEI is going to make it harder for leaders to articulate the value of diversity, and to put in place some of the best practices around ensuring that diverse people are considered for positions and reach their full potential.

We have definitely taken a step backward in the past year on the understanding that diversity is about excellence and implementing best practices that we know work to mitigate the challenges that diverse people face. But that just means we need to redouble our efforts.

Although this isn’t the best time to be optimistic about diversity in engineering, if we take the long view, I think that things are certainly better than they were 20 or 30 years ago. And I think 20 or 30 years from now they’ll be even better.

Get to Know the IEEE Board of Directors



The IEEE Board of Directors shapes the future direction of IEEE and is committed to ensuring IEEE remains a strong and vibrant organization—serving the needs of its members and the engineering and technology community worldwide—while fulfilling the IEEE mission of advancing technology for the benefit of humanity.

This article features IEEE Board of Directors members A. Matt Francis, Tom Murad, and Christopher Root.

IEEE Senior Member A. Matt Francis

Director, IEEE Region 5: Southwestern U.S.

A photo of a smiling man in a sweater. Moriah Hargrove Anders

Francis’s primary technology focus is extreme environment and high-temperature integrated circuits. His groundbreaking work has pushed the boundaries of electronics, leading to computers operating in low Earth orbit for more than a year on the International Space Station and on jet engines. Francis and his team have designed and built some of the world’s most rugged semiconductors and systems.

He is currently helping explore new computing frontiers in supersonic and hypersonic flight, geothermal energy exploration, and molten salt reactors. Well versed in shifting technology from idea to commercial application, Francis has secured and led projects with the U.S. Air Force, DARPA, NASA, the National Science Foundation, the U.S. Department of Energy, and private-sector customers.

Francis’s influence extends beyond his own ventures. He is a member of the IEEE Aerospace and Electronic Systems, IEEE Computer, and IEEE Electronics Packaging societies, demonstrating his commitment to industry and continuous learning.

He attended the University of Arkansas in Fayetteville for both his undergraduate and graduate degrees. He joined IEEE while at the university and was president of the IEEE–Eta Kappa Nu honor society’s Gamma Phi chapter. Francis’s other past volunteer roles include serving as chair of the IEEE Ozark Section, which covers Northwest Arkansas, and also as a member of the IEEE-USA Entrepreneurship Policy Innovation Committee.

His deep-rooted belief in the power of collaboration is evident in his willingness to share knowledge and support aspiring entrepreneurs. Francis is proud to have helped found a robotics club (an IEEE MGA Local Group) in his rural Elkins, Ark., community and to have served on steering committees for programs including IEEE TryEngineering and IEEE-USA’s Innovation, Research, and Workforce Conferences. He serves as an elected city council member for his town, and has cofounded two non-profits, supporting his community and the state of Arkansas.

Francis’s journey from entrepreneur to industry leader is a testament to his determination and innovative mindset. He has received numerous awards including the IEEE-USA Entrepreneur Achievement Award for Leadership in Entrepreneurial Spirit, IEEE Region 5 Directors Award, and IEEE Region 5 Outstanding Individual Member Achievement Award.

IEEE Senior Member Tom Murad

Director, IEEE Region 7: Canada

A photo of a smiling man in a suit. Siemens Canada

Murad is a respected technology leader, award-winning educator, and distinguished speaker on engineering, skills development, and education. Recently retired, he has 40 years of experience in professional engineering and technical operations executive management, including more than 10 years of academic and R&D work in industrial controls and automation.

He received his doctorate (Ph.D.) degree in power electronics and industrial controls from Loughborough University of Technology in the U.K.

Murad has held high-level positions in several international engineering and industrial organizations, and he contributed to many global industrial projects. His work on projects in power utilities, nuclear power, oil and gas, mining, automotive, and infrastructure industries has directly impacted society and positively contributed to the economy. He is a strong advocate of innovation and creativity, particularly in the areas of digitalization, smart infrastructure, and Industry 4.0. He continues his academic career as an adjunct professor at University of Guelph in Ontario, Canada.

His dedication to enhancing the capabilities of new generations of engineers is a source of hope and optimism. His work in significantly improving the quality and relevance of engineering and technical education in Canada is a testament to his commitment to the future of the engineering profession and community. For that he has been assigned by the Ontario Government to be a member of the board of directors of the Post Secondary Education Quality Assessment Board (PEQAB).

Murad is a member of the IEEE Technology and Engineering Management, IEEE Education, IEEE Intelligent Transportation Systems, and IEEE Vehicular Technology societies, the IEEE-Eta Kappa Nu honor society, and the Editorial Advisory Board Chair for the IEEE Canadian Review Magazine. His accomplishments show his passion for the engineering profession and community.

He is a member of the Order of Honor of the Professional Engineers of Ontario, Canada, Fellow of Engineers Canada, Fellow of Engineering Institutes of Canada (EIC), and received the IEEE Canada J.M. Ham Outstanding Engineering Educator Award, among other recognitions highlighting his impact on the field.

IEEE Senior Member Christopher Root

Director, Division VII

A photo of a smiling man in a suit. Vermont Electric Power Company and Shana Louiselle

Root has been in the electric utility industry for more than 40 years and is an expert in power system operations, engineering, and emergency response. He has vast experience in the operations, construction, and maintenance of transmission and distribution utilities, including all phases of the engineering and design of power systems. He has shared his expertise through numerous technical presentations on utility topics worldwide.

Currently an industry advisor and consultant, Root focuses on the crucial task of decarbonizing electricity production. He is engaged in addressing the challenges of balancing an increasing electrical market and dependence on renewable energy with the need to provide low-cost, reliable electricity on demand.

Root’s journey with IEEE began in 1983 when he attended his first meeting as a graduate student at Rensselaer Polytechnic Institute, in Troy, N.Y. Since then, he has served in leadership roles such as treasurer, secretary, and member-at-large of the IEEE Power & Energy Society (PES). His commitment to the IEEE mission and vision is evident in his efforts to revitalize the dormant IEEE PES Boston Chapter in 2007 and his instrumental role in establishing the IEEE PES Green Mountain Section in Vermont in 2015. He also is a member of the editorial board of the IEEE Power & Energy Magazine and the IEEE–Eta Kappa Nu honor society.

Root’s contributions and leadership in the electric utility industry have been recognized with the IEEE PES Leadership in Power Award and the PES Meritorious Service Award.

Early-Career Telecom Engineer Is a Model of IEEE Engagement



There were early signs that Muhammad Hamza Ihtisham was born to excel in engineering or computer science, but family tradition initially steered him toward a career in medicine. Ihtisham’s mother and other family members were medical professionals. His father is a businessman.

Even though his father had dreamed of having a son in the engineering field, it was assumed that Ihtisham would become a doctor. And he almost did. But when he didn’t pass the medical qualifying exams in high school, he saw it as a sign to switch professions.

Muhammad Hamza Ihtisham


Employer:

Jazz in Lahore, Pakistan

Title:

Network experience specialist in radio

Member grade:

IEEE member

Alma mater:

University of the Punjab

“I asked my parents and my principal for permission to switch my focus from medicine to computer science,” he says. Although the change took effect only three months before he had to take exams, he scored high enough to place third among the computer science students at his school. He has never looked back.

Ihtisham is now a network experience specialist in radio at the largest telecommunications provider in Pakistan: Lahore-based Jazz. Ihtisham monitors, supervises, and troubleshoots nationwide wireless networks and is a team player who implements smart systems and AI-based solutions to optimize network performance.

“We are working with 2G, 3G, and 4G network supervision,” he says, “and we’re also evolving for 5G and optical fiber networks.”

two men smiling for a portrait, one wearing glasses, in an indoor setting with a colored wall with writing in the background Muhammad Hamza Ihtisham chats with 2018 IEEE President Jim Jefferies.Muhammad Hamza Ihtisham

Early evidence of STEM affinity

Ihtisham didn’t need much encouragement to become an engineer, he says, adding that he always has wanted to work with technology.

When he was young, his father bought him a computer with a Pentium II CPU “at a time when there were very few computers in my town,” he says.

Ihtisham’s curiosity led him to dismantle and explore its components, fostering a deeper interest in technology.

“I destroyed many motherboards and processors when I pulled them out of the computer to see how they worked,” he says. It was part of his innate tendency to get to the bottom of how things worked. “I still have that spark in me, that inner child who wants to open things up and investigate how they work.”

He earned a bachelor’s degree in electrical engineering with a specialization in telecommunications from the University of the Punjab in 2018. He returned to pursue a master’s degree in industrial engineering and management—which he received in 2022.

Thanks to his IEEE connections, Ihtisham secured his position at Jazz even before getting his bachelor’s degree. As the university’s IEEE student branch chair, Ihtisham invited an engineer from Jazz to speak to students on campus. When Ihtisham later showed up at the company for a job interview, that same engineer was the department head and immediately recognized him.

Since his college days, Ihtisham has poured time and energy into giving back to the profession through participation in IEEE. He founded his school’s student chapter and today serves as chair of the IEEE Lahore Section’s Young Professionals group. He is also the deputy lead of the global technical and operation committee of the IEEE Young Professionals mentoring program, which connects experts with mentees to help them learn and further their career.

Active IEEE student leader

Ihtisham entered college thinking he would become a computer scientist, but before long he became convinced that his true passion lay in engineering. Noticing a gap in student activities within the school’s EE department, he joined IEEE in his third semester.

Although the university was more than 150 years old, electrical engineering was a relatively new course of study there.

“My graduating class had only the 10th cohort of graduates to earn that degree from the university,” he says.

As founder of the school’s IEEE student branch, Ihtisham set about adding activities and opportunities for would-be engineers that he felt were missing. He was the branch’s first chair, organizing activities, boosting membership, and overseeing initiatives that impacted his university and the wider IEEE Lahore Section. He was then appointed a student representative for the section.

“That was a turning point for me,” he says.

He originally started volunteering with IEEE for a pragmatic purpose that served the entire engineering student body, he says, but as he settled into his new leadership roles, volunteering became a source of personal fulfillment and development.

“When I started my IEEE journey, I was not prepared. But I worked on my leadership, my behavior, and improving my soft skills. So, you could say my involvement with IEEE has transformed my personality and served as leadership training.”

For his efforts, he has been recognized with several awards including the IEEE Lahore Section’s 2018 Outstanding Volunteer for organizing student activities and conferences.

“When I started my IEEE journey, I was not well groomed,” Ihistham says. “But I worked on my leadership, my behavior, and improving my soft skills. So, you could say my involvement with IEEE has transformed my personality and served as leadership training.”

The communications and negotiating skills he picked up by networking with IEEE members across the globe have benefited him at Jazz, he says.

His dedication to IEEE didn’t end with his student years. Today his roles involve mentoring, networking, and leading initiatives to foster growth and collaboration in the engineering community.

Now his leadership skills help him manage and motivate other volunteers and mentor engineering students. He received the 2021 IEEE MGA Young Professionals Achievement Award for organizing YP activities and the 2021 IEEE IAS Young Member Service Award for virtually engaging IEEE Industry Applications Society members during the COVID-19 pandemic.

Advice for aspiring engineers

To students considering a career in electrical engineering, Ihtisham emphasizes the importance of finding the right mentors and embracing open-source collaboration. He advises discussing ideas with experts to gain valuable insights and foster innovative thinking.

His success story underscores the value of mentorship, continuous learning, and community engagement. While he was in graduate school working toward his master’s degree, he began doing research to develop an effective and reliable brain-computer interface. He talked with the medical professionals in his family for information about how the brain works but then found himself at an impasse because there were not enough datasets in Pakistan for training his machine-learning software.

He reached out to the IEEE community and found a mentor for the project at the University of New South Wales in Sydney. Their collaboration was fruitful enough that Ihtisham was invited to present a TEDx talk on what he had learned about addiction and neurofeedback.

Based on that project, he took home third prize in the IEEE IAS Chapters and Membership Department Zucker Undergraduate Student Design Contest in 2019.

Ihtisham’s journey with IEEE exemplifies the impact of dedication, mentorship, and continued learning on building an interesting and successful engineering career.

“My success is having an impact on my younger cousins,” he says. “If they want to pursue a career in engineering or another STEM field, they have someone in the family who can guide them.”

Trailblazing Tech Leader Helps Shape U.S. AI Strategy



In the two years since Arati Prabhakar was appointed director of the White House Office of Science and Technology Policy, she has set the United States on a course toward regulating artificial intelligence. The IEEE Fellow advised the U.S. President Joe Biden in writing the executive order he issued to accomplish the goal just six months after she began her new role in 2022.

Prabhakar is the first woman and the first person of color to serve as OSTP director, and she has broken through the glass ceiling at other agencies as well. She was the first woman to lead the National Institute of Standards and Technology (NIST) and the Defense Advanced Research Projects Agency.

Arati Prabhakar


Employer

U.S. government

Title

Director of the White House Office of Science and Technology Policy

Member grade

Fellow

Alma maters

Texas Tech University; Caltech


Working in the public sector wasn’t initially on her radar. Not until she became a DARPA program manager in 1986, she says, did she really understand what she could accomplish as a government official.

“What I have come to love about [public service] is the opportunity to shape policies at a scale that is really unparalleled,” she says.

Prabhakar’s passion for tackling societal challenges by developing technology also led her to take leadership positions at companies including Raychem (now part of TE Connectivity), Interval Research Corp., and U.S. Venture Partners. In 2019 she helped found Actuate, a nonprofit in Palo Alto, Calif., that seeks to create technology to help address climate change, data privacy, health care access, and other pressing issues.

“I really treasure having seen science, technology, and innovation from all different perspectives,” she says. “But the part I have loved most is public service because of the impact and reach that it can have.”

Discovering her passion for electrical engineering

Prabhakar, who was born in India and raised in Texas, says she decided to pursue a STEM career because when she was growing up, her classmates said women weren’t supposed to work in science, technology, engineering or mathematics.

“Them saying that just made me want to pursue it more,” she says. Her parents, who had wanted her to become a doctor, supported her pursuit of engineering, she adds.

After earning a bachelor’s degree in electrical engineering in 1979 from Texas Tech University, in Lubbock, she moved to California to continue her education at Caltech. She graduated with a master’s degree in EE in 1980, then earned a doctorate in applied physics in 1984. Her doctoral thesis focused on understanding deep-level defects and impurities in semiconductors that affect device performance.

After acquiring her Ph.D., she says, she wanted to make a bigger impact with her research than academia would allow, so she applied for a policy fellowship from the American Association for the Advancement of Science to work at the congressional Office of Technology Assessment. The office examines issues involving new or expanding technologies, assesses their impact, and studies whether new policies are warranted.


“We have huge aspirations for the future—such as mitigating climate change—that science and technology have to be part of achieving.”


“I wanted to share my research in semiconductor manufacturing processes with others,” Prabhakar says. “That’s what felt exciting and valuable to me.”

She was accepted into the program and moved to Washington, D.C. During the yearlong fellowship, she conducted a study on microelectronics R&D for the research and technology subcommittee of the U.S. House of Representatives committee on science, space, and technology. The subcommittee oversees STEM-related matters including education, policy, and standards.

While there, she worked with people who were passionate about public service and government, but she didn’t feel the same, she says, until she joined DARPA. As program manager, Prabhakar established and led several projects including a microelectronics office that invests in developing new technologies in areas such as lithography, optoelectronics, infrared imaging, and neural networks.

In 1993 an opportunity arose that she couldn’t refuse, she says: President Bill Clinton nominated her to direct the National Institute of Standards and Technology. NIST develops technical guidelines and conducts research to create tools that improve citizens’ quality of life. At age 34, she became the first woman to lead the agency.

Believing in IEEE’s Mission


Like many IEEE members, Prabhakar says, she joined IEEE as a student member while attending Texas Tech University because the organization’s mission aligned with her belief that engineering is about creating value in the world.

She continues to renew her membership, she says, because IEEE emphasizes that technology should benefit humanity.

“It really comes back to this idea of the purpose of engineering and the role that it plays in the world,” she says.


After leading NIST through the first Clinton administration, she left for the private sector, including stints as CTO at appliance-component maker Raychem in Menlo Park, Calif., and president of private R&D lab Interval Research of Palo Alto, Calif. In all, she spent the next 14 years in the private sector, mostly as a partner at U.S. Venture Partners, in Menlo Park, where she invested in semiconductor and clean-tech startups.

In 2012 she returned to DARPA and became its first female director.

“When I received the call offering me the job, I stopped breathing,” Prabhakar says. “It was a once-in-a-lifetime opportunity to make a difference at an agency that I had loved earlier in my career. And it proved to be just as meaningful an experience as I had hoped.”

For the next five years she led the agency, focusing on developing better military systems and the next generation of artificial intelligence, as well as creating solutions in social science, synthetic biology, and neurotechnology.

Under her leadership, in 2014 DARPA established the Biological Technologies Office to oversee basic and applied research in areas including gene editing, neurosciences, and synthetic biology. The office launched the Pandemic Prevention Platform, which helped fund the development of the mRNA technology that is used in the Moderna and Pfizer coronavirus vaccines.

She left the agency in 2017 to move back to California with her family.

“When I left the organization, what was very much on my mind was that the United States has the most powerful innovation engine the world has ever seen,” Prabhakar says. “At the same time, what kept tugging at me was that we have huge aspirations for the future—such as mitigating climate change—that science and technology have to be part of achieving.”

That’s why, in 2019, she helped found Actuate. She served as the nonprofit’s chief executive until 2022, when she took on the role of OSTP director.

Although she didn’t choose her career path because it was her passion, she says, she came to realize that she loves the role that engineering, science, and technology play in the world because of their “power to change how the future unfolds.”


two women standing, one speaking at a podium in a black blazer and the other standing off to the left side in a red blazer

Leading AI regulation worldwide

When Biden asked if Prabhakar would take the OSTP job, she didn’t think twice, she says. “When do you need me to move in?” she says she told him.

“I was so excited to work for the president because he sees science and technology as a necessary part of creating a bright future for the country,” Prabhakar says.

A month after she took office, the generative AI program ChatGPT launched and became a hot topic.

“AI was already being used in different areas, but all of a sudden it became visible to everyone in a way that it really hadn’t been before,” she says.

Regulating AI became a priority for the Biden administration because of the technology’s breadth and power, she says, as well as the rapid pace at which it’s being developed.

Prabhakar led the creation of Biden’s Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. Signed on 30 October 2022, the order outlines goals such as protecting consumers and their privacy from AI systems, developing watermarking systems for AI-generated content, and warding off intellectual property theft stemming from the use of generative models.

“The executive order is possibly the most important accomplishment in relation to AI,” Prabhakar says. “It’s a tool that mobilizes the [U.S. government’s] executive branch and recognizes that such systems have safety and security risks, but [it] also enables immense opportunity. The order has put the branches of government on a very constructive path toward regulation.”

Meanwhile, the United States spearheaded a U.N. resolution to make regulating AI an international priority. The United Nations adopted the measure this past March. In addition to defining regulations, it seeks to use AI to advance progress on the U.N.’s sustainable development goals.

“There’s much more to be done,” Prabhakar says, “but I’m really happy to see what the president has been able to accomplish, and really proud that I got to help with that.”

A Non-Engineer’s Journey to IEEE Leadership



Sharlene Brown often accompanied her husband, IEEE Senior Member Damith Wickramanayake, to organization meetings. He has held leadership positions in the IEEE Jamaica Section, in IEEE Region 3, and on the IEEE Member and Geographic Activities board. Both are from Jamaica.

She either waited outside the conference room or helped with tasks such as serving refreshments. Even though her husband encouraged her to sit in on the meetings, she says, she felt uncomfortable doing so because she wasn’t an engineer. Brown is an accountant and human resources professional. Her husband is a computer science professor at the University of Technology, Jamaica, in Kingston. He is currently Region 3’s education activities coordinator and a member of the section’s education and outreach committee for the IEEE Educational Activities Board.

Sharlene Brown


Employer

Maritime Authority of Jamaica, in Kingston

Title

Assistant accountant

Member grade

Senior member

Alma mater

University of Technology, Jamaica, in Kingston; Tsinghua University, in Beijing

After earning her master’s degree in public administration in 2017, Brown says, she felt she finally was qualified to join IEEE, so she applied. Membership is open to individuals who, by education or experience, are competent in different fields including management. She was approved the same year.

“When I joined IEEE, I would spend long hours at night reading various operations manuals and policies because I wanted to know what I was getting into,” she says. “I was always learning. That’s how I got to know a lot of things about the organization.”

Brown is now a senior member and an active IEEE volunteer. She founded the Jamaica Section’s Women in Engineering group; established a student branch; sits on several high-level IEEE boards; and ran several successful recruitment campaigns to increase the number of senior members in Jamaica and throughout Region 3.

Brown was also a member of the subcommittee of the global Women in Engineering committee; she served as membership coordinator and ran several successful senior member campaigns, elevating women on the committee and across IEEE.

Brown also was integral in the promotion and follow-up activities for the One IEEE event held in January at the University of Technology, Jamaica. The first-of-its-kind workshop connected more than 200 participants to each other and to the organization by showcasing Jamaica’s active engineering community. The Jamaica Section has 135 IEEE members.

From factory worker to accountant

Brown grew up in Bog Walk, a rural town in the parish of St. Catherine. Because she had low grades in high school, the only job she was able to get after graduating was as a temporary factory worker at the nearby Nestlé plant. She worked as many shifts as she could to help support her family.

“I didn’t mind working,” she says, “because I was making my mark. Anything I do, I am going to be excellent at, whether it’s cleaning the floor or doing office work.” But she had bigger plans than being a factory worker, she says.

A friend told her about a temporary job overseeing exams at the Jamaican Institute of Management, now part of the University of Technology. Brown worked both jobs for a time until the school hired her full time to do administrative work in its accounting department.

One of the perks of working there was free tuition for employees, and Brown took full advantage. She studied information management and computer applications, Jamaican securities, fraud detection, forensic auditing, and supervisory management, earning an associate degree in business administration in 2007. The school hired her in 2002 as an accountant, and she worked there for five years.

In 2007 she joined the Office of the Prime Minister, in Kingston, initially as an officer handling payments to suppliers. Her hard work and positive attitude got her noticed by other managers, she says. After a month she was tapped by the budget department to become a commitment control officer, responsible for allocating and overseeing funding for four of the country’s ministries.

“What I realized through my volunteer work in IEEE is that you’re never alone. There is always somebody to guide you.”

As a young accountant, she didn’t have hands-on experience with budgeting, but she was a quick learner who produced quality work, she says. She learned the budgeting process by helping her colleagues when her work slowed down and during her lunch breaks.

That knowledge gave her the skills she needed to land her current job as an assistant accountant with the budget and management accounts group in the Maritime Authority of Jamaica accounts department, a position she has held since 2013.

While she was working for the Office of the Prime Minister, Brown continued to further her education. She took night courses at the University of Technology and, in 2012, earned a bachelor’s degree in business administration. She majored in accounting and minored in human resources management.

She secured a full scholarship in 2016 from the Chinese government to study public administration in Beijing at Tsinghua University, earning a master’s degree with distinction in 2017.

Brown says she is now ready to shift to a human resources career. Even though she has been supervising people for more than 17 years, though, she is having a hard time finding an HR position, she says.

Still willing to take on challenges, she is increasing her experience by volunteering with an HR consulting firm in Jamaica. To get more formal training, she is currently working on an HR certification from the Society for Human Resource Management.

class setting with children sitting at desks wearing masks and shields on their desks Sharlene Brown arranged for the purchase of 350 desk shields for Jamaican schools during the COVID-19 pandemic.Sharlene Brown

Building a vibrant community

After graduating from Tsinghua University, Brown began volunteering for the IEEE Jamaica Section and Region 3.

In 2019 she founded the section’s IEEE Women in Engineering affinity group, which she chaired for three years. She advocated for more women in leadership roles and has run successful campaigns to increase the number of female senior members locally, regionally, and globally across IEEE. She herself was elevated to senior member in 2019.

Brown also got the WIE group more involved in helping the community. One project she is particularly proud of is the purchase of 350 desk shields for Jamaican schools so students could more safely attend classes and examination sessions in person during the COVID-19 pandemic.

Brown was inspired to undertake the project when a student explained on a local news program that his family couldn’t afford Internet for their home, so he was unable to attend classes remotely.

“Every time I watched the video clip, I would cry,” she says. “This young man might be the next engineer, the country’s next minister, or the next professional.

“I’m so happy we were able to get funding from Region 3 and a local organization to provide those shields.”

She established an IEEE student branch at the Caribbean Maritime University, in Kingston. The branch had almost 40 students at the time of formation.

Brown is working to form student branches at other Jamaican universities, and she is attempting to establish an IEEE Power & Energy Society chapter in the section.

She is a member of several IEEE committees including the Election Oversight and Tellers. She serves as chair for the region’s Professional Activities Committee.

“What I realized through my volunteer work in IEEE is that you’re never alone,” she says. “There is always somebody to help guide you. If they don’t know something, they will point you to the person who does.

“Also, you’re allowed to make mistakes,” she says. “In some organizations, if you make a mistake, you might lose your job or have to pay for your error. But IEEE is your professional home, where you learn, grow, and make mistakes.”

On some of the IEEE committees where she serves, she is the only woman of color, but she says she has not faced any discrimination—only respect.

“I feel comfortable and appreciated by the people and the communities I work with,” she says. “That motivates me to continue to do well and to touch lives positively. That’s what makes me so active in serving in IEEE: You’re appreciated and rewarded for your hard work.”

Fitting It All In: Keys to Mastering Work-Life Balance



This article is part of our exclusive career advice series in partnership with the IEEE Technology and Engineering Management Society.

With technological advancement and changing societal expectations, the concept of work-life balance has become an elusive goal for many, particularly within the engineering community. The drive to remain continuously engaged with work, the pressure to achieve perfection, and the challenge of juggling work and personal responsibilities have created a landscape where professional and personal spheres are in constant negotiation.

This article covers several factors that can disrupt work-life balance, with recommendations on how to address them.

The myth of urgency

In an era dominated by instant communication via email and text messages, the expectation to respond quickly has led to an illusion of urgency. The perpetual state of constant alertness blurs the distinction between what’s urgent and what isn’t.

Recognizing that not every email message warrants an immediate response is the first step in deciding what’s important. By prioritizing responses based on actual importance, individuals can reclaim control over their time, reduce stress, and foster a more manageable workload.

Throughout my career, I have found that setting specific times to check and respond to email helps avoid distractions throughout the day. There are programs that prioritize email and classify tasks based on its urgency and importance.

Another suggestion is to unsubscribe from unnecessary newsletters and set up filters that move unwanted email to a specific folder or the trash before it reaches your inbox.

Cutting back the endless workday

Today’s work environment, characterized by remote access and flexible hours, has extended the workday beyond a set schedule and has encroached on personal time. The situation is particularly prevalent among engineers committed to solving complex problems, leading to a scenario where work is a constant companion—which leaves little room for personal pursuits or time with family.

A balanced life is healthier and more sustainable, and it enriches the quality of our work and our relationships with those we love.

Establishing clear boundaries between work and personal time is essential. One way to do so is to communicate clear working hours to your manager, coworkers, and clients. You can use tools such as email autoresponders and do-not-disturb modes to reinforce your boundaries.

It’s important to recognize that work, while integral, is only one aspect of life.

The quest for perfectionism

The pursuit of perfection is a common trap for many professionals, leading to endless revisions and dissatisfaction with one’s work. The quest not only wastes an inordinate amount of time. It also detracts from the quality of life.

Embracing the philosophy that “it doesn’t have to be perfect” can liberate individuals from the trap. By aiming for excellence rather than perfection, one can achieve high standards of work while also making time for personal growth and happiness.

To help adopt such a mindset, practice setting realistic standards for different tasks by asking yourself what level of quality is truly necessary for each. Allocating a fixed amount of time to specific tasks can help prevent endless tweaking.

The necessity of exercise

Physical activity often takes a back seat to busy schedules and is often viewed as negotiable or secondary to work and family responsibilities. Exercise, however, is a critical component for maintaining mental and physical health. Integrating regular physical activity into one’s routine is not just beneficial; it’s essential for maintaining balance and enhancing your quality of life.

One way to ensure you are taking care of your health is to schedule exercise as a nonnegotiable activity in your calendar, similar to important meetings or activities. Also consider integrating physical activity into your daily routine, such as riding a bicycle to work, walking to meetings, and taking short strolls around your office building. If you work from home, take a walk around your neighborhood.

Sleep boosts productivity

Contrary to the glorification of overwork and sleep deprivation in some professional circles, sleep is a paramount factor in maintaining high levels of productivity and creativity. Numerous studies have shown that adequate sleep—seven to nine hours for most adults—enhances cognitive functions, problem-solving skills, and memory retention.

For engineers and others in professions where innovation and precision are paramount, neglecting sleep can diminish the quality of work and the capacity for critical thinking.

Sleep deprivation has been linked to a variety of health issues including increased risk of cardiovascular disease, diabetes, and stress-related conditions.

Prioritizing sleep is not a luxury but a necessity for those aiming to excel in their career while also enjoying a fulfilling personal life.

Begin your bedtime routine at the same time each night to cue your body that it’s time to wind down. For a smooth transition to sleep, try adjusting lighting, reducing noise, and engaging in relaxing activities such as reading or listening to calm music.

Relaxation is the counterbalance to stress

Relaxation is crucial for counteracting the effects of stress and preventing burnout. Techniques such as meditation, deep-breathing exercises, yoga, and engaging in leisure activities that bring joy can significantly reduce stress levels, thereby enhancing emotional equilibrium and resilience.

Spending time with friends and family is another effective relaxation strategy. Social interactions with loved ones can provide emotional support, happiness, and a sense of belonging, all of which are essential for limiting stress and promoting mental health. The social connections help build a support network that can serve as a buffer against life’s challenges, providing a sense of stability and comfort.

Allow yourself to recharge and foster a sense of fulfillment by allocating time each week to pursue interests that enrich your life. Also consider incorporating relaxation techniques in your daily routine, such as mindfulness meditation or short walks outdoors.

Guarding time and energy

In the quest for balance, learning to say no and ruthlessly eliminating activities that do not add value are invaluable skills. Make conscious choices about how to spend your time and energy, focusing on activities that align with personal and professional priorities. By doing so, individuals can protect their time, reduce stress, and dedicate themselves more fully to meaningful pursuits.

Practice assertiveness in communicating your capacity and boundaries to others. When asked to take on an additional task, it’s important to consider the impact on your current priorities. Don’t hesitate to decline politely if the new task doesn’t align.

Challenges for women

When discussing work-life balance, it’s essential to acknowledge the specific challenges faced by women, particularly in engineering. They are often expected to manage household duties, childcare, and their professional responsibilities while also supporting their partner’s career goals.

It can be especially challenging for women who strive to meet high standards at work and home. Recognizing and addressing their challenges is crucial in fostering an environment that supports balance for everyone.

One way to do that is to have open discussions with employers about the challenges and the support needed in the workplace and at home. Advocating for company policies that support work-life balance, such as a flexible work schedule and parental leave, is important.

Achieving a healthy work-life balance in the engineering profession—and indeed in any high-pressure field—is an ongoing process that requires self-awareness, clear priorities, and the courage to set boundaries.

It involves a collective effort by employers and workers to recognize the value of balance and to create a culture that supports it.

By acknowledging the illusion of constant urgency, understanding our limitations, and addressing the particular challenges faced by women, we can move toward a future where professional success and personal fulfillment are mutually reinforcing.

A balanced life is healthier and more sustainable, and it enriches the quality of our work and our relationships with those we love.

Gladys West: The Hidden Figure Behind GPS



Schoolchildren around the world are told that they have the potential to be great, often with the cheery phrase: “The sky’s the limit!”

Gladys West took those words literally.

While working for four decades as a mathematician and computer programmer at the U.S. Naval Proving Ground (now the Naval Surface Warfare Center) in Dahlgren, Va., she prepared the way for a satellite constellation in the sky that became an indispensable part of modern life: the Global Positioning System, or GPS.

The second Black woman to ever work at the proving ground, West led a group of analysts who used satellite sensor data to calculate the shape of the Earth and the orbital routes around it. Her meticulous calculations and programming work established the flight paths now used by GPS satellites, setting the stage for navigation and positioning systems on which the world has come to rely.

For decades, West’s contributions went unacknowledged. But she has begun receiving overdue recognition. In 2018 she was inducted into the U.S. Air Force Space and Missile Pioneers Hall of Fame. In 2021 the International Academy of Digital Arts and Sciences presented her its Webby Lifetime Achievement Award, while the U.K. Royal Academy of Engineering gave her the Prince Philip Medal, the organization’s highest individual honor.

West was presented the 2024 IEEE President’s Award for “mathematical modeling and development of satellite geodesy models that played a pivotal role in the development of the Global Positioning System.” The award is sponsored by IEEE.

How the “hidden figure” overcame barriers

West’s path to becoming a technology professional and an IEEE honoree was an unlikely one. Born in 1930 in Sutherland, Va., she grew up working on her family’s farm. To supplement the family’s income, her mother worked at a tobacco factory and her father was employed by a railroad company.

Physical toil in the hot sun from daybreak until sundown with paltry financial returns, West says, made her determined to do something other than farming.

Every day when she ventured into the fields to sow or harvest crops with her family, her thoughts were on the little red schoolhouse beyond the edge of the farm. She recalls gladly making the nearly 5-kilometer trek from her house, through the woods and over streams, to reach the one-room school.

She knew that postsecondary education was her ticket out of farm life, so throughout her school years she made sure she was a standout student and a model of focus and perseverance.

Her parents couldn’t afford to pay for her college education, but as valedictorian of her high school class, she earned a full-tuition scholarship from the state of Virginia. Money she earned as a babysitter paid for her room and board.

West decided to pursue a degree in mathematics at Virginia State College (now Virginia State University), a historically Black school in Petersburg.

At the time, the field was dominated by men. She earned a bachelor’s degree in the subject in 1952 and became a schoolteacher in Waverly, Va. After two years in the classroom, she returned to Virginia State to pursue a master’s degree in mathematics, which she earned in 1955.

black and white image of a woman sitting at a desk writing on a pad of paper Gladys West at her desk, meticulously crunching numbers manually in the era before computers took over such tasks.Gladys West

Setting the groundwork for GPS

West began her career at the Naval Proving Ground in early 1956. She was hired as a mathematician, joining a cadre of workers who used linear algebra, calculus, and other methods to manually solve complex problems such as differential equations. Their mathematical wizardry was used to handle trajectory analysis for ships and aircraft as well as other applications.

She was one of four Black employees at the facility, she says, adding that her determination to prove the capability of Black professionals drove her to excel.

As computers were introduced into the Navy’s operations in the 1960s, West became proficient in Fortran IV. The programming language enabled her to use the IBM 7030—the world’s fastest supercomputer at the time—to process data at an unprecedented rate.

Because of her expertise in mathematics and computer science, she was appointed director of projects that extracted valuable insights from satellite data gathered during NASA missions. West and her colleagues used the data to create ever more accurate models of the geoid—the shape of the Earth—factoring in gravitational fields and the planet’s rotation.

One such mission was Seasat, which lasted from June to October 1978. Seasat was launched into orbit to test oceanographic sensors and gain a better understanding of Earth’s seas using the first space-based synthetic aperture radar (SAR) system, which enabled the first remote sensing of the Earth’s oceans.

SAR can acquire high-resolution images at night and can penetrate through clouds and rain. Seasat captured many valuable 2D and 3D images before a malfunction caused the satellite to be taken down.

Enough data was collected from Seasat for West’s team to refine existing geodetic models to better account for gravity and magnetic forces. The models were important for precisely mapping the Earth’s topography, determining the orbital routes that would later be used by GPS satellites, as well as documenting the spatial relationships that now let GPS determine exactly where a receiver is.

In 1986 she published the “Data Processing System Specifications for the GEOSAT Satellite Radar Altimeter” technical report. It contained new calculations that could make her geodetic models more accurate. The calculations were made possible by data from the radio altimeter on the GEOSAT, a Navy satellite that went into orbit in March 1985.

West’s career at Dahlgren lasted 42 years. By the time she retired in 1998, all 24 satellites in the GPS constellation had been launched to help the world keep time and handle navigation. But her role was largely unknown.

A model of perseverance

Neither an early bout of imposter syndrome nor the racial tensions that were an everyday element of her work life during the height of the Civil Rights Movement were able to knock her off course, West says.

In the early 1970s, she decided that her career advancement was not proceeding as smoothly as she thought it should, so she decided to go to graduate school part time for another degree. She considered pursuing a doctorate in mathematics but realized, “I already had all the technical credentials I would ever need for my work for the Navy.” Instead, to solidify her skills as a manager, she earned a master’s degree in 1973 in public administration from the University of Oklahoma in Norman.

After retiring from the Navy, she earned a doctorate in public administration in 2000 from Virginia Tech. Although she was recovering from a stroke at the time that affected her physical abilities, she still had the same drive to pursue an education that had once kept her focused on a little red schoolhouse.

A formidable legacy

West’s contributions have had a lasting impact on the fields of mathematics, geodesy, and computer science. Her pioneering efforts in a predominantly male and racially segregated environment set a precedent for future generations of female and minority scientists.

West says her life and career are testaments to the power of perseverance, skill, and dedication—or “stick-to-it-iveness,” to use her parlance. Her story continues to inspire people who strive to push boundaries. She has shown that the sky is indeed not the limit but just the beginning.

AI Missteps Could Unravel Global Peace and Security



This is a guest post. The views expressed here are solely those of the authors and do not represent positions of IEEE Spectrum, The Institute, or IEEE.

Many in the civilian artificial intelligence community don’t seem to realize that today’s AI innovations could have serious consequences for international peace and security. Yet AI practitioners—whether researchers, engineers, product developers, or industry managers—can play critical roles in mitigating risks through the decisions they make throughout the life cycle of AI technologies.

There are a host of ways by which civilian advances of AI could threaten peace and security. Some are direct, such as the use of AI-powered chatbots to create disinformation for political-influence operations. Large language models also can be used to create code for cyberattacks and to facilitate the development and production of biological weapons.

Other ways are more indirect. AI companies’ decisions about whether to make their software open-source and in which conditions, for example, have geopolitical implications. Such decisions determine how states or nonstate actors access critical technology, which they might use to develop military AI applications, potentially including autonomous weapons systems.

AI companies and researchers must become more aware of the challenges, and of their capacity to do something about them.

Change needs to start with AI practitioners’ education and career development. Technically, there are many options in the responsible innovation toolbox that AI researchers could use to identify and mitigate the risks their work presents. They must be given opportunities to learn about such options including IEEE 7010: Recommended Practice for Assessing the Impact of Autonomous and Intelligent Systems on Human Well-being, IEEE 7007-2021: Ontological Standard for Ethically Driven Robotics and Automation Systems, and the National Institute of Standards and Technology’s AI Risk Management Framework.

If education programs provide foundational knowledge about the societal impact of technology and the way technology governance works, AI practitioners will be better empowered to innovate responsibly and be meaningful designers and implementers of regulations.

What Needs to Change in AI Education

Responsible AI requires a spectrum of capabilities that are typically not covered in AI education. AI should no longer be treated as a pure STEM discipline but rather a transdisciplinary one that requires technical knowledge, yes, but also insights from the social sciences and humanities. There should be mandatory courses on the societal impact of technology and responsible innovation, as well as specific training on AI ethics and governance.

Those subjects should be part of the core curriculum at both the undergraduate and graduate levels at all universities that offer AI degrees.

If education programs provide foundational knowledge about the societal impact of technology and the way technology governance works, AI practitioners will be empowered to innovate responsibly and be meaningful designers and implementers of AI regulations.

Changing the AI education curriculum is no small task. In some countries, modifications to university curricula require approval at the ministry level. Proposed changes can be met with internal resistance due to cultural, bureaucratic, or financial reasons. Meanwhile, the existing instructors’ expertise in the new topics might be limited.

An increasing number of universities now offer the topics as electives, however, including Harvard, New York University, Sorbonne University, Umeå University, and the University of Helsinki.

There’s no need for a one-size-fits-all teaching model, but there’s certainly a need for funding to hire dedicated staff members and train them.

Adding Responsible AI to Lifelong Learning

The AI community must develop continuing education courses on the societal impact of AI research so that practitioners can keep learning about such topics throughout their career.

AI is bound to evolve in unexpected ways. Identifying and mitigating its risks will require ongoing discussions involving not only researchers and developers but also people who might directly or indirectly be impacted by its use. A well-rounded continuing education program would draw insights from all stakeholders.

Some universities and private companies already have ethical review boards and policy teams that assess the impact of AI tools. Although the teams’ mandate usually does not include training, their duties could be expanded to make courses available to everyone within the organization. Training on responsible AI research shouldn’t be a matter of individual interest; it should be encouraged.

Organizations such as IEEE and the Association for Computing Machinery could play important roles in establishing continuing education courses because they’re well placed to pool information and facilitate dialogue, which could result in the establishment of ethical norms.

Engaging With the Wider World

We also need AI practitioners to share knowledge and ignite discussions about potential risks beyond the bounds of the AI research community.

Fortunately, there are already numerous groups on social media that actively debate AI risks including the misuse of civilian technology by state and nonstate actors. There are also niche organizations focused on responsible AI that look at the geopolitical and security implications of AI research and innovation. They include the AI Now Institute, the Centre for the Governance of AI, Data and Society, the Distributed AI Research Institute, the Montreal AI Ethics Institute, and the Partnership on AI.

Those communities, however, are currently too small and not sufficiently diverse, as their most prominent members typically share similar backgrounds. Their lack of diversity could lead the groups to ignore risks that affect underrepresented populations.

What’s more, AI practitioners might need help and tutelage in how to engage with people outside the AI research community—especially with policymakers. Articulating problems or recommendations in ways that nontechnical individuals can understand is a necessary skill.

We must find ways to grow the existing communities, make them more diverse and inclusive, and make them better at engaging with the rest of society. Large professional organizations such as IEEE and ACM could help, perhaps by creating dedicated working groups of experts or setting up tracks at AI conferences.

Universities and the private sector also can help by creating or expanding positions and departments focused on AI’s societal impact and AI governance. Umeå University recently created an AI Policy Lab to address the issues. Companies including Anthropic, Google, Meta, and OpenAI have established divisions or units dedicated to such topics.

There are growing movements around the world to regulate AI. Recent developments include the creation of the U.N. High-Level Advisory Body on Artificial Intelligence and the Global Commission on Responsible Artificial Intelligence in the Military Domain. The G7 leaders issued a statement on the Hiroshima AI process, and the British government hosted the first AI Safety Summit last year.

The central question before regulators is whether AI researchers and companies can be trusted to develop the technology responsibly.

In our view, one of the most effective and sustainable ways to ensure that AI developers take responsibility for the risks is to invest in education. Practitioners of today and tomorrow must have the basic knowledge and means to address the risk stemming from their work if they are to be effective designers and implementers of future AI regulations.

Authors’ note: Authors are listed by level of contributions. The authors were brought together by an initiative of the U.N. Office for Disarmament Affairs and the Stockholm International Peace Research Institute launched with the support of a European Union initiative on Responsible Innovation in AI for International Peace and Security.

❌