Reading view

There are new articles available, click to refresh the page.

Glass Antenna Turns Windows Into 5G Base Stations



Since 5G began its rollout in 2018 or 2019, fifth-generation wireless networks have spread across the globe to cover hundreds of millions of users. But while it offers lower latency than precursor networks, 5G also requires more base stations. To avoid installing unsightly equipment on more and more shared spaces, Japanese companies are developing transparent glass antennas that allow windows to serve as base stations that can be shared by several carriers.

Because 5G networks include spectrum comprising higher frequencies than 4G, base stations for 5G networks serve a smaller coverage footprint. Which means more base stations are needed compared to 4G. Due to a lack of installation spots and the high cost of rolling out 5G networks, carriers in Japan have been sharing mobile infrastructure.

Last month the Tokyo-based communications company JTower announced the deployment of the new glass antenna, created in part by glassmaker AGC (one of the world’s largest) and the mobile carrier NTT Docomo. The first was installed on a window in Tokyo’s Shinjuku district.

The product is “the world’s first antenna that turns a window into a base station that can be attached to a building window inside and turn the outdoors into a service area without spoiling the cityscape or the exterior appearance of the building,” says Shota Ochiai, a marketing manager at AGC.

NTT Docomo reports that it uses transparent conductive materials as the basis for its antenna, sandwiching the conductive material along with a transparent resin, the kind used in laminated windshields, in between two sheets of glass.

“I don’t think the idea for using transparent conductive materials as an antenna existed before,” said AGC’s Kentaro Oka in a company statement. “The durability of the antenna was significantly increased by placing the conductive materials between glass.”

The transparent antenna can be engineered according to the thickness of the glass to reduce the attenuation and reflection of the radio signals being absorbed and emitted by the window-sized device. “The glass antenna uses our proprietary technology to smooth out the disruption in the direction of radio waves when they pass through a window,” says Ochia.

A brief history of the window antenna

Branded WAVEANTENNA, the antenna is installed on the interior surface of windows. Apart perhaps from its cabling, the WAVEANTENNA is an otherwise inconspicuous piece of equipment that is often tucked out of sight, placed near the top or otherwise at the edges of a window.

It is compatible with frequencies in the 5G Sub6 band—meaning signals that are less than 6 gigahertz (GHz). Sub6 antennas represent critical portions of a 5G deployment, as their lower frequency ranges penetrate barriers like walls and buildings better than the substantially higher-bandwidth millimeter-wave portions of the 5G spectrum.

An earlier version of the product was launched in 2020, while a version that could handle sharing by multiple cell networks was introduced last year, according to AGC. The company says its antenna is optimized for frequencies between 3.7 and 4.5 GHz bands, which still allows for substantial bandwidth—albeit not comparable with what an ideal millimeter-wave 5G deployment could reach. (Millimeter waves can deliver typically between 10 and 50 GHz of bandwidth.)

The glass antenna can help expand 5G coverage as infrastructure sharing will become more important to carriers, AGC says. Besides increasing the number of locations for base stations, the device makes it easier to select the appropriate installation height, according to Ochiai.

AGC has also applied 5G glass antennas to automobiles, where they can help reduce dropped signals. The company reports that users include Halo.Car, an on-demand EV rental service in Las Vegas that relies on high-speed networks for remote drivers to deliver cars to customers.

Qualla Kids Pickup System

Here’s a cool tool that confronts the problem posed by this question: Are you sure who is picking up your kids at leaving time? It’s a necessity, and as far as schools go, it’s a bit of an historical problem. The challenge: To respond to all the factors involved in this process in the simplest, most workable way possible.

  • Families: Parents’ time tables may not be the same as their kids, therefore they have to ask third parties.
  • Teachers: If they want to be agile, they must remember last minute changes, whatsapps, mails, calls, familiy circumstancies, and on and on.
  • Schools: While well-intentioned, they are not registering these kinds of transactions.

The goal of Qualla is to simplify this process in a way that is as workable, practical, and as efficient as possible, making the school pickup process more effective, easier and safer.

Therefore, they created an app that addresses all of these factors in just a click. Testing this with the market, the people behind Qualla realized that this method was valid for several other functionalities, and today they solve such complex processes as: canteens, school bus, authorizations, arrivals, pickups and more, and with an extended road map.

With an agile one-click solution providing an easy user interface with no learning needed— and a secure interface where each transaction is automatically registered — has allowed Qualla Kids Pickup System to differentiate themselves and establish relationships with other trusted partners. From September of 2022, they’ve recorded more than 1.3 Million transactions, over 20,000 users and a satisfaction rate of 98%. For these reasons and more, Qualla earned a Cool Tool Award for Best Communication Solution (Finalist) as part of The EdTech Awards 2024. Learn more

The post Qualla Kids Pickup System appeared first on EdTech Digest.

EdQuill

This is a comprehensive Learning Management System (LMS) that enhances the educational experience. The digital platform connects educators, students, and parents to facilitate interactive and engaging learning. It provides an app and webpage user-friendly interface for educators to efficiently create, manage, and deliver educational content. Administrators can effortlessly set up classes and curriculums, add users, and assign content, whether it is custom or pre-existing. Students can access this content, complete assignments, and track their progress. Students and teachers can use a stylus on the app to write directly on the assignment. It also has a helpful writing feature to display work. Part of its real value is actually quite basic: it allows efficient communication between teachers, students, and parents.

EdQuill was developed by a team with Ushapriya Ravilla to address the evolving needs of modern education. EdQuill aims to improve the teaching and learning experience, reduce administrative burdens on educators, and foster greater parent involvement in students’ education. It is available to educational institutions, learning centers, tutors, and educators. Access EdQuill by signing up for a free trial or scheduling a demo with EdQuill’s expert representatives.

In two short years, EdQuill has helped over 100 educators impact more than 2,000 students nationwide. Using the platform led to a 40% decrease in printing costs and increased productivity in administrative tasks for 100% of teachers. For these reasons and more, EdQuill earned a Cool Tool Award (finalist) for “Best Classroom Management Solution” as part of The EdTech Awards 2024 from EdTech Digest. Learn more

The post EdQuill appeared first on EdTech Digest.

Optical Metasurfaces Shine a Light on Li-Fi, Lidar



A new, tunable smart surface can transform a single pulse of light into multiple beams, each aimed in different directions. The proof-of-principle development opens the door to a range of innovations in communications, imaging, sensing, and medicine.

The research comes out of the Caltech lab of Harry Atwater, a professor of applied physics and materials science, and is possible due to a type of nano-engineered material called a metasurface. “These are artificially designed surfaces which basically consist of nanostructured patterns,” says Prachi Thureja, a graduate student in Atwater’s group. “So it’s an array of nanostructures, and each nanostructure essentially allows us to locally control the properties of light.”

The surface can be reconfigured up to millions of times per second to change how it is locally controlling light. That’s rapid enough to manipulate and redirect light for applications in optical data transmission such as optical space communications and Li-Fi, as well as lidar.

“[The metasurface] brings unprecedented freedom in controlling light,” says Alex M.H. Wong, an associate professor of electrical engineering at the City University of Hong Kong. “The ability to do this means one can migrate existing wireless technologies into the optical regime. Li-Fi and LIDAR serve as prime examples.”

Metasurfaces remove the need for lenses and mirrors

Manipulating and redirecting beams of light typically involves a range of conventional lenses and mirrors. These lenses and mirrors might be microscopic in size, but they’re still using optical properties of materials like Snell’s Law, which describes the progress of a wavefront through different materials and how that wavefront is redirected—or refracted—according to the properties of the material itself.

By contrast, the new work offers the prospect of electrically manipulating a material’s optical properties via a semiconducting material. Combined with nano-scaled mirror elements, the flat, microscopic devices can be made to behave like a lens, without requiring lengths of curved or bent glass. And the new metasurface’s optical properties can be switched millions of times per second using electrical signals.

“The difference with our device is by applying different voltages across the device, we can change the profile of light coming off of the mirror, even though physically it’s not moving,” says paper co-author Jared Sisler—also a graduate student in Atwater’s group. “And then we can steer the light like it’s an electrically reprogrammable mirror.”

The device itself, a chip that measures 120 micrometers on each side, achieves its light-manipulating capabilities with an embedded surface of tiny gold antennas in a semiconductor layer of indium tin oxide. Manipulating the voltages across the semiconductor alters the material’s capacity to bend light—also known as its index of refraction. Between the reflection of the gold mirror elements and the tunable refractive capacity of the semiconductor, a lot of rapidly-tunable light manipulation becomes possible.

“I think the whole idea of using a solid-state metasurface or optical device to steer light in space and also use that for encoding information—I mean, there’s nothing like that that exists right now,” Sisler says. “So I mean, technically, you can send more information if you can achieve higher modulation rates. But since it’s kind of a new domain, the performance of our device is more just to show the principle.”

Metasurfaces open up plenty of new possibilities

The principle, says Wong, suggests a wide array of future technologies on the back of what he says are likely near-term metasurface developments and discoveries.

“The metasurface [can] be flat, ultrathin, and lightweight while it attains the functions normally achieved by a series of carefully curved lenses,” Wong says. “Scientists are currently still unlocking the vast possibilities the metasurface has available to us.

“With improvements in nanofabrication, elements with small feature sizes much smaller than the wavelength are now reliably fabricable,” Wong continues. “Many functionalities of the metasurface are being routinely demonstrated, benefiting not just communication but also imaging, sensing, and medicine, among other fields... I know that in addition to interest from academia, various players from industry are also deeply interested and making sizable investments in pushing this technology toward commercialization.”

Breaking Silence: Giving the Silent a Voice Through Thoughts

This shows a woman and speech bubbles.Researchers enabled a silent person to produce speech using thought alone. Depth electrodes in the participant's brain transmitted electrical signals to a computer, which then vocalized imagined syllables. This technology offers hope for paralyzed individuals to regain speech. The study marks a significant step towards brain-computer interfaces for voluntary communication.

AM Mediaworks

AM Mediaworks is a PR firm specializing in edtech and the future of learning for over a decade partnering with leading corporations, global nonprofits and notable disruptors. Over 10 years, AM Mediaworks’ has driven integrated and strategic PR campaigns for hundreds of companies at every stage and size.

Founder Alyssa Miller’s communications programs drive brand engagement, thought leadership and visibility, and support funding, M&A, partnerships, events and global expansion.

The firm has a proven track record of securing headline news and op-eds that set industry trends and are transforming education at every stage including LearnPlatform’s Evidence as a Service, Instructure’s dominance as the #1 life long learning platform and Podium Education collaborating with Intel and charity:water to reach 1 million undergrads in 2023-2024 through a for-credit real-work program. For these reasons and more, AM Mediaworks is The EdTech Leadership Awards 2024 Winner for “Best PR Firm Working in Edtech” as part of The EdTech Awards from EdTech Digest. Learn more

The post AM Mediaworks appeared first on EdTech Digest.

Vodafone Launches Private 5G Tech to Compete With Wi-Fi



As the world’s 5G rollout continues with its predictable fits and starts, the cellular technology is also starting to move into a space already dominated by another wireless tech: Wi-Fi. Private 5G networks—in which a person or company sets up their own facility-wide cellular network—are today finding applications where Wi-Fi was once the only viable game in town. This month, the Newbury, England–based telecom company Vodafone is releasing a Raspberry Pi–based private 5G base station that it is now being aimed at developers, who might then jump-start a wave of private 5G innovation.

“The Raspberry Pi is the most affordable CPU[-based] computer that you can get,” says Santiago Tenorio, network architecture director at Vodafone. “Which means that what we build, in essence, has a similar bill of materials as a good quality Wi-Fi router.”

The company has teamed with the Surrey, England–based Lime Microsystems to release a crowd-funded range of private 5G base-station kits ranging in price from US $800 to $12,000.

“In a Raspberry Pi—in this case, a Raspberry Pi 4 is what we used—then you can be sure you can run that anywhere, because it’s the tiniest processor that you can have,” Tenorio says.

a person holding a black box in their hand Santiago Tenorio holds one of Lime Microsystems’ private 5G base-station kits.Vodafone

Private 5G for Drones and Bakeries

There are a range of reasons, Tenorio says, why someone might want their own private 5G network. At the moment, the scenarios mostly concern companies and organizations—although individual expert users could still be drawn to, for instance, 5G’s relatively low latency and network flexibility.

Tenorio highlighted security and mobility as two big selling points for private 5G.

A commercial storefront business, for instance, might be attracted to the extra security protections that a SIM card can provide compared to password-based wireless network security. Because each SIM card contains its own unique identifier and encryption keys, thereby also enabling a network to be able to recognize and authorize each individual connection, Tenorio says private 5G network security is a considerable selling point.

Plus, Tenorio says, it’s simpler for customers to access. Envisioning a use case of a bakery with its own privately deployed 5G network, he says, “You don’t need a password. You don’t need a conversation [with a clerk behind a counter] or a QR code. You simply walk into the bakery, and you are into the bakery’s network.”

As to mobility, Tenorio suggests one emergency relief and rescue application that might rely on the presence of a nearby 5G station that causes devices in its range to ping.

Setting up a private 5G base station on a drone, Tenorio says, would enable that drone to fly over a disaster area and, via its airborne network, send a challenge signal to all devices in its coverage area to report in. Any device receiving that signal with a compatible SIM card then responds with its unique identification information.

“Then any phone would try to register,” Tenorio says. “And then you would know if there is someone [there].”

Not only that, but because the ping would be from a device with a SIM card, the private 5G rescue drone in the above scenario could potentially provide crucial information about each individual, just based on the device’s identifier alone. And that user-identifying feature of private 5G isn’t exactly irrelevant to a bakery owner—or to any other commercial customer—either, Tenorio says.

“If you are a bakery,” he says, “You could actually know who your customers are, because anyone walking into the bakery would register on your network and would leave their [International Mobile Subscriber Identity].”

Winning the Lag Race

According to Christian Wietfeld, professor of electrical engineering at the Technical University of Dortmund in Germany, private 5G networks also bring the possibility of less lag. His team has tested private 5G deployments—although, Wietfeld says that they haven’t yet tested the present Vodafone/Lime Microsystem base station—and have found private 5G to provide reliably better connectivity.

Wietfeld’s team will present their research at the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications in September in Valencia, Spain. They found that private 5G can deliver connections up to 10 times as fast as connections in networks with high loads, compared to Wi-Fi (the IEEE 802.11 wireless standard).

“The additional cost and effort to operate a private 5G network pays off in lower downtimes of production and less delays in delivery of goods,” Wietfeld says. “Also, for safety-critical use cases such as on-campus teleoperated driving, private 5G networks provide the necessary reliability and predictability of performance.”

For Lime Networks, according to the company’s CEO and founder Ebrahim Bushehri, the challenge comes in developing a private 5G base station that maximized versatility and openness to whatever kinds of applications developers could envision—while still being reasonably inexpensive and retaining a low-power envelope.

“The solution had to be ultraportable and with an optional battery pack which could be mounted on drones and autonomous robots, for remote and tactical deployments, such as emergency-response scenarios and temporary events,” Bushehri says.

Meanwhile, the crowdfunding behind the device’s rollout, via the website Crowd Supply, allows both companies to keep tabs on the kinds of applications the developer community is envisioning for this technology, he says.

“Crowdfunding,” Bushehri says, “Is one of the key indicators of community interest and engagement. Hence the reason for launching the campaign on Crowd Supply to get feedback from early adopters.”

This Japanese Aircraft Became a 5G Base Station



Skies over Tokyo are thick with air traffic these days amid an influx of international tourists. But one plane recently helped revive the dream of airborne Internet access for all. Researchers in Japan announced on 28 May that they have successfully tested 5G communications equipment in the 38 gigahertz band from an altitude of 4 kilometers.

The experiment was aimed at developing an aerial relay backhaul with millimeter-wave band links between ground stations and a simulated High-Altitude Platform Station (HAPS), a radio station aboard an uncrewed aircraft that stays aloft in the stratosphere for extended periods of time. A Cessna flying out of Chofu Airfield in western Tokyo was outfitted with a 38 GHz 5G base station and core network device, and three ground stations were equipped with lens antennas with automatic tracking.

With the Cessna as a relay station, the setup enabled communication between one ground station connected to the 5G terrestrial network and a terrestrial base station connected to a user terminal, according to a consortium of Japanese companies and the National Institute of Information and Communications Technology.

“We developed technology that enables communication using 5G [New Radio] by correctly directing 38 GHz beams toward three ground stations while adapting to the flight attitude, speed, direction, position, altitude, etc. during aircraft rotation,” said Shinichi Tanaka, a manager in broadcaster SKY Perfect JSAT’s Space Business Division. “We confirmed that the onboard system, designed for the stratosphere, has adequate communication and tracking performance even under the flight speed and attitude fluctuations of a Cessna aircraft, which are more severe than those of HAPS.”

The sharpest beam width of the ground station antenna is 0.8 degrees, and the trial demonstrated a tracking method that always captures the Cessna in this angular range, Tanaka added.

A diagram with photos shows Cessna in the air alongside a photo of the onboard antenna, as well as a ground station consisting of a platform with antennas. A Cessna [top left] carried a 38 GHz antenna [top right] during a flight, functioning as a 5G base station for receivers on the ground [bottom right]. The plane was able to connect to multiple ground stations at once [illustration, bottom left].NTT Docomo

Millimeter wave bands, such as the 38 GHz band, have the highest data capacity for 5G and are suited for crowded venues such as stadiums and shopping centers. When used outdoors, however, the signals can be attenuated by rain and other moisture in the atmosphere. To counter this, the consortium successfully tested an algorithm that automatically switches between multiple ground stations to compensate for moisture-weakened signals.

Unlike Google’s failed Loon effort, which focused on providing direct communication to user terminals, the HAPS trial is aimed at creating backhaul lines for base stations. Led by Japan’s Ministry of Internal Affairs and Communications, the experiment is designed to deliver high-speed, high-capacity communications both for the development of 5G and 6G networks as well as emergency response. The latter is critical in disaster-prone Japan—in January, communication lines around the Noto Peninsula on the Sea of Japan were severed following a magnitude-7 earthquake that caused over 1,500 casualties.

“This is the world’s first successful 5G communication experiment via the sky using the Q-band frequency,” said Hinata Kohara, a researcher with mobile carrier NTT Docomo’s 6G Network Innovation Department. “In addition, the use of 5G communication base stations and core network equipment on the aircraft for communication among multiple ground stations enables flexible and fast route switching of the ground [gateway] station for a feeder link, and is robust against propagation characteristics such as rainfall. Another key feature is the use of a full digital beamforming method for beam control, which uses multiple independent beams to improve frequency utilization efficiency.”

Doppler shift compensation was a challenge in the experiment, Kohara said, adding that the researchers will conduct further tests to find a solution with the aim of commercializing a HAPS service in 2026. Aside from SKY Perfect JSAT and NTT Docomo, the consortium includes Panasonic Holdings, known for its electronics equipment.

The HAPS push comes as NTT Docomo announced it has led another consortium in a $100 million investment in Airbus’ AALTO HAPS, operator of the Zephyr fixed-wing uncrewed aerial vehicle. The solar-powered wing can be used for 5G direct-to-device communications or Earth observation, and has set records including 64 days of stratospheric flight. According to Airbus, it has a reach of “up to 250 terrestrial towers in difficult mountainous terrain.” Docomo said the investment is aimed at commercializing Zephyr services in Japan, including coverage of rural areas and disaster zones, and around the world in 2026.

❌