Reading view

There are new articles available, click to refresh the page.

Video Friday: The Secrets of Shadow Robot’s New Hand



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

At ICRA 2024, in Tokyo last May, we sat down with the director of Shadow Robot, Rich Walker, to talk about the journey toward developing its newest model. Designed for reinforcement learning, the hand is extremely rugged, has three fingers that act like thumbs, and has fingertips that are highly sensitive to touch.

[ IEEE Spectrum ]

Food Angel is a food delivery robot to help with the problems of food insecurity and homelessness. Utilizing autonomous wheeled robots for this application may seem to be a good approach, especially with a number of successful commercial robotic delivery services. However, besides technical considerations such as range, payload, operation time, autonomy, etc., there are a number of important aspects that still need to be investigated, such as how the general public and the receiving end may feel about using robots for such applications, or human-robot interaction issues such as how to communicate the intent of the robot to the homeless.

[ RoMeLa ]

The UKRI FLF team RoboHike of UCL Computer Science of the Robot Perception and Learning lab with Forestry England demonstrate the ANYmal robot to help preserve the cultural heritage of an historic mine in the Forest of Dean, Gloucestershire, UK.

This clip is from a reboot of the British TV show “Time Team.” If you’re not already a fan of “Time Team,” let me just say that it is one of the greatest retro reality TV shows ever made, where actual archaeologists wander around the United Kingdom and dig stuff up. If they can find anything. Which they often can’t. And also it has Tony Robinson (from “Blackadder”), who runs everywhere for some reason. Go to Time Team Classics on YouTube for 70+ archived episodes.

[ UCL RPL ]

UBTECH humanoid robot Walker S Lite is working in Zeekr’s intelligent factory to complete handling tasks at the loading workstation for 21 consecutive days, and assist its employees with logistics work.

[ UBTECH ]

Current visual navigation systems often treat the environment as static, lacking the ability to adaptively interact with obstacles. This limitation leads to navigation failure when encountering unavoidable obstructions. In response, we introduce IN-Sight, a novel approach to self-supervised path planning, enabling more effective navigation strategies through interaction with obstacles.

[ ETH Zurich paper / IROS 2024 ]

When working on autonomous cars, sometimes it’s best to start small.

[ University of Pennsylvania ]

MIT MechE researchers introduce an approach called SimPLE (Simulation to Pick Localize and placE), a method of precise kitting, or pick and place, in which a robot learns to pick, regrasp, and place objects using the object’s computer-aided design (CAD) model, and all without any prior experience or encounters with the specific objects.

[ MIT ]

Staff, students (and quadruped robots!) from UCL Computer Science wish the Great Britain athletes the best of luck this summer in the Olympic Games & Paralympics.

[ UCL Robotics Institute ]

Walking in tall grass can be hard for robots, because they can’t see the ground that they’re actually stepping on. Here’s a technique to solve that, published in Robotics and Automation Letters last year.

[ ETH Zurich Robotic Systems Lab ]

There is no such thing as excess batter on a corn dog, and there is also no such thing as a defective donut. And apparently, making Kool-Aid drink pouches is harder than it looks.

[ Oxipital AI ]

Unitree has open-sourced its software to teleoperate humanoids in VR for training-data collection.

[ Unitree / GitHub ]

Nothing more satisfying than seeing point-cloud segments wiggle themselves into place, and CSIRO’s Wildcat SLAM does this better than anyone.

[ IEEE Transactions on Robotics ]

A lecture by Mentee Robotics CEO Lior Wolf, on Mentee’s AI approach.

[ Mentee Robotics ]

Figure 02 Robot Is a Sleeker, Smarter Humanoid



Today, Figure is introducing the newest, slimmest, shiniest, and least creatively named next generation of its humanoid robot: Figure 02. According to the press release, Figure 02 is the result of “a ground-up hardware and software redesign” and is “the highest performing humanoid robot,” which may even be true for some arbitrary value of “performing.” Also notable is that Figure has been actively testing robots with BMW at a manufacturing plant in Spartanburg, S.C., where the new humanoid has been performing “data collection and use case training.”

The rest of the press release is pretty much, “Hey, check out our new robot!” And you’ll get all of the content in the release by watching the videos. What you won’t get from the videos is any additional info about the robot. But we sent along some questions to Figure about these videos, and have a few answers from Michael Rose, director of controls, and Vadim Chernyak, director of hardware.


First, the trailer:

How many parts does Figure 02 have, and is this all of them?

Figure: A couple hundred unique parts and a couple thousand parts total. No, this is not all of them.

Does Figure 02 make little Figure logos with every step?

Figure: If the surface is soft enough, yes.

Swappable legs! Was that hard to do, or easier to do because you only have to make one leg? Figure: We chose to make swappable legs to help with manufacturing.

Is the battery pack swappable too?

Figure: Our battery is swappable, but it is not a quick swap procedure.

What’s that squishy-looking stuff on the back of Figure 02’s knees and in its elbow joints?

Figure: These are soft stops which limit the range of motion in a controlled way and prevent robot pinch points

Where’d you hide that thumb motor?

Figure: The thumb is now fully contained in the hand.

Tell me about the “skin” on the neck!

Figure: The skin is a soft fabric which is able to keep a clean seamless look even as the robot moves its head.

And here’s the reveal video:

When Figure 02’s head turns, its body turns too, and its arms move. Is that necessary, or aesthetic?

Figure: Aesthetic.

The upper torso and shoulders seem very narrow compared to other humanoids. Why is that?

Figure: We find it essential to package the robot to be of similar proportions to a human. This allows us to complete our target use cases and fit into our environment more easily.

What can you tell me about Figure 02’s walking gait?

Figure: The robot is using a model predictive controller to determine footstep locations and forces required to maintain balance and follow the desired robot trajectory.

How much runtime do you get from 2.25 kilowatt-hours doing the kinds of tasks that we see in the video?

Figure: We are targeting a 5-hour run time for our product.


A photo a grey and black humanoid robot with a shiny black face plate standing in front of a white wall. Slick, but also a little sinister?Figure

This thing looks slick. I’d say that it’s maybe a little too far on the sinister side for a robot intended to work around humans, but the industrial design is badass and the packaging is excellent, with the vast majority of the wiring now integrated within the robot’s skins and flexible materials covering joints that are typically left bare. Figure, if you remember, raised a US $675 million Series B that valued the company at $2.6 billion, and somehow the look of this robot seems appropriate to that.

I do still have some questions about Figure 02, such as where the interesting foot design came from and whether a 16-degree-of-freedom hand is really worth it in the near term. It’s also worth mentioning that Figure seems to have a fair number of Figure 02 robots running around—at least five units at its California headquarters, plus potentially a couple of more at the BMW Spartanburg manufacturing facility.

I also want to highlight this boilerplate at the end of the release: “our humanoid is designed to perform human-like tasks within the workforce and in the home.” We are very, very far away from a humanoid robot in the home, but I appreciate that it’s still an explicit goal that Figure is trying to achieve. Because I want one.

iRobot’s Autowash Dock Is (Almost) Automated Floor Care



The dream of robotic floor care has always been for it to be hands-off and mind-off. That is, for a robot to live in your house that will keep your floors clean without you having to really do anything or even think about it. When it comes to robot vacuuming, that’s been more or less solved thanks to self-emptying robots that transfer debris into docking stations, which iRobot pioneered with the Roomba i7+ in 2018. By 2022, iRobot’s Combo j7+ added an intelligent mopping pad to the mix, which definitely made for cleaner floors but was also a step backwards in the sense that you had to remember to toss the pad into your washing machine and fill the robot’s clean water reservoir every time. The Combo j9+ stuffed a clean water reservoir into the dock itself, which could top off the robot with water by itself for a month.

With the new Roomba Combo 10 Max, announced today, iRobot has cut out (some of) that annoying process thanks to a massive new docking station that self-empties vacuum debris, empties dirty mop water, refills clean mop water, and then washes and dries the mopping pad, completely autonomously.


iRobot

The Roomba part of this is a mildly upgraded j7+, and most of what’s new on the hardware side here is in the “multifunction AutoWash Dock.” This new dock is a beast: It empties the robot of all of the dirt and debris picked up by the vacuum, refills the Roomba’s clean water tank from a reservoir, and then starts up a wet scrubby system down under the bottom of the dock. The Roomba deploys its dirty mopping pad onto that system, and then drives back and forth while the scrubby system cleans the pad. All the dirty water from this process gets sucked back up into a dedicated reservoir inside the dock, and the pad gets blow-dried while the scrubby system runs a self-cleaning cycle.

A round black vacuuming robot sits inside of a large black docking station that is partially transparent to show clean and dirty water tanks inside. The dock removes debris from the vacuum, refills it with clean water, and then uses water to wash the mopping pad.iRobot

This means that as a user, you’ve only got to worry about three things: dumping out the dirty water tank every week (if you use the robot for mopping most days), filling the clean water tank every week, and then changing out the debris every two months. That is not a lot of hands-on time for having consistently clean floors.

The other thing to keep in mind about all of these robots is that they do need relatively frequent human care if you want them to be happy and successful. That means flipping them over and getting into their guts to clean out the bearings and all that stuff. iRobot makes this very easy to do, and it’s a necessary part of robot ownership, so the dream of having a robot that you can actually forget completely is probably not achievable.

The consequence for this convenience is a real chonker of a dock. The dock is basically furniture, and to the company’s credit, iRobot designed it so that the top surface is useable as a shelf—Access to the guts of the dock are from the front, not the top. This is fine, but it’s also kind of crazy just how much these docks have expanded, especially once you factor in the front ramp that the robot drives up, which sticks out even farther.

A round black robot on a wooden floor approaches a dirty carpet and uses a metal arm to lift a wet mopping pad onto its back. The Roomba will detect carpet and lift its mopping pad up to prevent drips.iRobot

We asked iRobot director of project management Warren Fernandez about whether docks are just going to keep on getting bigger forever until we’re all just living in giant robot docks, to which he said: “Are you going to continue to see some large capable multifunction docks out there in the market? Yeah, I absolutely think you will—but when does big become too big?” Fernandez says that there are likely opportunities to reduce dock size going forward through packaging efficiencies or dual-purpose components, but that there’s another option, too: Distributed docks. “If a robot has dry capabilities and wet capabilities, do those have to coexist inside the same chassis? What if they were separate?” says Fernandez.

We should mention that iRobot is not the first in the robotic floor care robot space to have a self-cleaning mop, and it’s also not the first to think about distributed docks, although as Fernandez explains, this is a more common approach in Asia where you can also take advantage of home plumbing integration. “It’s a major trend in China, and starting to pop up a little bit in Europe, but not really in North America yet. How amazing could it be if you had a dock that, in a very easy manner, was able to tap right into plumbing lines for water supply and sewage disposal?”

According to Fernandez, this tends to be much easier to do in China, both because the labor cost for plumbing work is far lower than in the United States and Europe, and also because it’s fairly common for apartments in China to have accessible floor drains. “We don’t really yet see it in a major way at a global level,” Fernandez tells us. “But that doesn’t mean it’s not coming.”

A round black robot on a wooden floor approaches a dirty carpet and uses a metal arm to lift a wet mopping pad onto its back. The robot autonomously switches mopping mode on and off for different floor surfaces.iRobot

We should also mention the Roomba Combo 10 Max, which includes some software updates:

  • The front-facing camera and specialized bin sensors can identify dirtier areas eight times as effectively as before.
  • The Roomba can identify specific rooms and prioritize the order they’re cleaned in, depending on how dirty they get.
  • A new cleaning behavior called “Smart Scrub” adds a back-and-forth scrubbing motion for floors that need extra oomph.

And here’s what I feel like the new software should do, but doesn’t:

  • Use the front-facing camera and bin sensors to identify dirtier areas and then autonomously develop a schedule to more frequently clean those areas.
  • Activate Smart Scrub when the camera and bin sensors recognize an especially dirty floor.

I say “should do” because the robot appears to be collecting the data that it needs to do these things but it doesn’t do them yet. New features (especially new features that involve autonomy) take time to develop and deploy, but imagine a robot that makes much more nuanced decisions about where and when to clean based on very detailed real-time data and environmental understanding that iRobot has already implemented.

I also appreciate that even as iRobot is emphasizing autonomy and leveraging data to start making more decisions for the user, the company is also making sure that the user has as much control as possible through the app. For example, you can set the robot to mop your floor without vacuuming first, even though if you do that, all you’re going to end up with a much dirtier mop. Doesn’t make a heck of a lot of sense, but if that’s what you want, iRobot has empowered you to do it.

A round black vacuuming robot sits inside of a large black docking station that is opened to show clean and dirty water tanks inside. The dock opens from the front for access to the clean- and dirty-water storage and the dirt bag.iRobot

The Roomba Combo 10 Max will be launching in August for US $1,400. That’s expensive, but it’s also how iRobot does things: A new Roomba with new tech always gets flagship status and premium cost. Sooner or later it’ll be affordable enough that the rest of us will be able to afford it, too.

Video Friday: 1X Robots Tidy Up



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDS
ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UNITED ARAB EMIRATES
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

In this video, you see the start of 1X’s development of an advanced AI system that chains simple tasks into complex actions using voice commands, allowing seamless multi-robot control and remote operation. By starting with single-task models, we ensure smooth transitions to more powerful unified models, ultimately aiming to automate high-level actions using AI.

This video does not contain teleoperation, computer graphics, cuts, video speedups, or scripted trajectory playback. It’s all controlled via neural networks.

[ 1X ]

As the old adage goes, one cannot claim to be a true man without a visit to the Great Wall of China. XBot-L, a full-sized humanoid robot developed by Robot Era, recently acquitted itself well in a walk along sections of the Great Wall.

[ Robot Era ]

The paper presents a novel rotary wing platform, that is capable of folding and expanding its wings during flight. Our source of inspiration came from birds’ ability to fold their wings to navigate through small spaces and dive. The design of the rotorcraft is based on the monocopter platform, which is inspired by the flight of Samara seeds.

[ AirLab ]

We present a variable stiffness robotic skin (VSRS), a concept that integrates stiffness-changing capabilities, sensing, and actuation into a single, thin modular robot design. Reconfiguring, reconnecting, and reshaping VSRSs allows them to achieve new functions both on and in the absence of a host body.

[ Yale Faboratory ]

Heimdall is a new rover design for the 2024 University Rover Challenge (URC). This video shows highlights of Heimdall’s trip during the four missions at URC 2024.

Heimdall features a split body design with whegs (wheel legs), and a drill for sub-surface sample collection. It also has the ability to manipulate a variety of objects, collect surface samples, and perform onboard spectrometry and chemical tests.

[ WVU ]

I think this may be the first time I’ve seen an autonomous robot using a train? This one is delivering lunch boxes!

[ JSME ]

The AI system used identifies and separates red apples from green apples, after which a robotic arm picks up the red apples identified with a qb SoftHand Industry and gently places them in a basket.

My favorite part is the magnetic apple stem system.

[ QB Robotics ]

DexNex (v0, June 2024) is an anthropomorphic teleoperation testbed for dexterous manipulation at the Center for Robotics and Biosystems at Northwestern University. DexNex recreates human upper-limb functionality through a near 1-to-1 mapping between Operator movements and Avatar actions.

Motion of the Operator’s arms, hands, fingers, and head are fed forward to the Avatar, while fingertip pressures, finger forces, and camera images are fed back to the Operator. DexNex aims to minimize the latency of each subsystem to provide a seamless, immersive, and responsive user experience. Future research includes gaining a better understanding of the criticality of haptic and vision feedback for different manipulation tasks; providing arm-level grounded force feedback; and using machine learning to transfer dexterous skills from the human to the robot.

[ Northwestern ]

Sometimes the best path isn’t the smoothest or straightest surface, it’s the path that’s actually meant to be a path.

[ RaiLab ]

Fulfilling a school requirement by working in a Romanian locomotive factory one week each month, Daniela Rus learned to operate “machines that help us make things.” Appreciation for the practical side of math and science stuck with Daniela, who is now Director of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).

[ MIT ]

For AI to achieve its full potential, non-experts need to be let into the development process, says Rumman Chowdhury, CEO and cofounder of Humane Intelligence. She tells the story of farmers fighting for the right to repair their own AI-powered tractors (which some manufacturers actually made illegal), proposing everyone should have the ability to report issues, patch updates or even retrain AI technologies for their specific uses.

[ TED ]

❌