Reading view

There are new articles available, click to refresh the page.

AI Models Complex Molecular States with Precision

This shows a molecule.Researchers developed a brain-inspired AI technique using neural networks to model the challenging quantum states of molecules, crucial for technologies like solar panels and photocatalysts. This new approach significantly improves accuracy, enabling better prediction of molecular behaviors during energy transitions. By enhancing our understanding of molecular excited states, this research could revolutionize material prototyping and chemical synthesis.

Ansys SimAI Software Predicts Fully Transient Vehicle Crash Outcomes



The Ansys SimAI™ cloud-enabled generative artificial intelligence (AI) platform combines the predictive accuracy of Ansys simulation with the speed of generative AI. Because of the software’s versatile underlying neural networks, it can extend to many types of simulation, including structural applications.
This white paper shows how the SimAI cloud-based software applies to highly nonlinear, transient structural simulations, such as automobile crashes, and includes:

  • Vehicle kinematics and deformation
  • Forces acting upon the vehicle
  • How it interacts with its environment
  • How understanding the changing and rapid sequence of events helps predict outcomes

These simulations can reduce the potential for occupant injuries and the severity of vehicle damage and help understand the crash’s overall dynamics. Ultimately, this leads to safer automotive design.

Download this free whitepaper now!

A New Type of Neural Network Is More Interpretable



Artificial neural networks—algorithms inspired by biological brains—are at the center of modern artificial intelligence, behind both chatbots and image generators. But with their many neurons, they can be black boxes, their inner workings uninterpretable to users.

Researchers have now created a fundamentally new way to make neural networks that in some ways surpasses traditional systems. These new networks are more interpretable and also more accurate, proponents say, even when they’re smaller. Their developers say the way they learn to represent physics data concisely could help scientists uncover new laws of nature.

“It’s great to see that there is a new architecture on the table.” —Brice Ménard, Johns Hopkins University

For the past decade or more, engineers have mostly tweaked neural-network designs through trial and error, says Brice Ménard, a physicist at Johns Hopkins University who studies how neural networks operate but was not involved in the new work, which was posted on arXiv in April. “It’s great to see that there is a new architecture on the table,” he says, especially one designed from first principles.

One way to think of neural networks is by analogy with neurons, or nodes, and synapses, or connections between those nodes. In traditional neural networks, called multi-layer perceptrons (MLPs), each synapse learns a weight—a number that determines how strong the connection is between those two neurons. The neurons are arranged in layers, such that a neuron from one layer takes input signals from the neurons in the previous layer, weighted by the strength of their synaptic connection. Each neuron then applies a simple function to the sum total of its inputs, called an activation function.

black text on a white background with red and blue lines connecting on the left and black lines connecting on the right In traditional neural networks, sometimes called multi-layer perceptrons [left], each synapse learns a number called a weight, and each neuron applies a simple function to the sum of its inputs. In the new Kolmogorov-Arnold architecture [right], each synapse learns a function, and the neurons sum the outputs of those functions.The NSF Institute for Artificial Intelligence and Fundamental Interactions

In the new architecture, the synapses play a more complex role. Instead of simply learning how strong the connection between two neurons is, they learn the full nature of that connection—the function that maps input to output. Unlike the activation function used by neurons in the traditional architecture, this function could be more complex—in fact a “spline” or combination of several functions—and is different in each instance. Neurons, on the other hand, become simpler—they just sum the outputs of all their preceding synapses. The new networks are called Kolmogorov-Arnold Networks (KANs), after two mathematicians who studied how functions could be combined. The idea is that KANs would provide greater flexibility when learning to represent data, while using fewer learned parameters.

“It’s like an alien life that looks at things from a different perspective but is also kind of understandable to humans.” —Ziming Liu, Massachusetts Institute of Technology

The researchers tested their KANs on relatively simple scientific tasks. In some experiments, they took simple physical laws, such as the velocity with which two relativistic-speed objects pass each other. They used these equations to generate input-output data points, then, for each physics function, trained a network on some of the data and tested it on the rest. They found that increasing the size of KANs improves their performance at a faster rate than increasing the size of MLPs did. When solving partial differential equations, a KAN was 100 times as accurate as an MLP that had 100 times as many parameters.

In another experiment, they trained networks to predict one attribute of topological knots, called their signature, based on other attributes of the knots. An MLP achieved 78 percent test accuracy using about 300,000 parameters, while a KAN achieved 81.6 percent test accuracy using only about 200 parameters.

What’s more, the researchers could visually map out the KANs and look at the shapes of the activation functions, as well as the importance of each connection. Either manually or automatically they could prune weak connections and replace some activation functions with simpler ones, like sine or exponential functions. Then they could summarize the entire KAN in an intuitive one-line function (including all the component activation functions), in some cases perfectly reconstructing the physics function that created the dataset.

“In the future, we hope that it can be a useful tool for everyday scientific research,” says Ziming Liu, a computer scientist at the Massachusetts Institute of Technology and the paper’s first author. “Given a dataset we don’t know how to interpret, we just throw it to a KAN, and it can generate some hypothesis for you. You just stare at the brain [the KAN diagram] and you can even perform surgery on that if you want.” You might get a tidy function. “It’s like an alien life that looks at things from a different perspective but is also kind of understandable to humans.”

Dozens of papers have already cited the KAN preprint. “It seemed very exciting the moment that I saw it,” says Alexander Bodner, an undergraduate student of computer science at the University of San Andrés, in Argentina. Within a week, he and three classmates had combined KANs with convolutional neural networks, or CNNs, a popular architecture for processing images. They tested their Convolutional KANs on their ability to categorize handwritten digits or pieces of clothing. The best one approximately matched the performance of a traditional CNN (99 percent accuracy for both networks on digits, 90 percent for both on clothing) but using about 60 percent fewer parameters. The datasets were simple, but Bodner says other teams with more computing power have begun scaling up the networks. Other people are combining KANs with transformers, an architecture popular in large language models.

One downside of KANs is that they take longer per parameter to train—in part because they can’t take advantage of GPUs. But they need fewer parameters. Liu notes that even if KANs don’t replace giant CNNs and transformers for processing images and language, training time won’t be an issue at the smaller scale of many physics problems. He’s looking at ways for experts to insert their prior knowledge into KANs—by manually choosing activation functions, say—and to easily extract knowledge from them using a simple interface. Someday, he says, KANs could help physicists discover high-temperature superconductors or ways to control nuclear fusion.

Mind-Bending: Psilocybin Reshapes Brain Networks for Weeks

This shows a psychedelic brain.A new study reveals that psilocybin, the active compound in magic mushrooms, temporarily disrupts brain networks involved in introspective thinking, like daydreaming and memory. These changes persist for weeks, potentially making the brain more flexible and improving mental health. The findings could pave the way for psilocybin-based therapies for depression and PTSD. The research underscores the importance of using these drugs under medical supervision.

Nvidia Conquers Latest AI Tests​



For years, Nvidia has dominated many machine learning benchmarks, and now there are two more notches in its belt.

MLPerf, the AI benchmarking suite sometimes called “the Olympics of machine learning,” has released a new set of training tests to help make more and better apples-to-apples comparisons between competing computer systems. One of MLPerf’s new tests concerns fine-tuning of large language models, a process that takes an existing trained model and trains it a bit more with specialized knowledge to make it fit for a particular purpose. The other is for graph neural networks, a type of machine learning behind some literature databases, fraud detection in financial systems, and social networks.

Even with the additions and the participation of computers using Google’s and Intel’s AI accelerators, systems powered by Nvidia’s Hopper architecture dominated the results once again. One system that included 11,616 Nvidia H100 GPUs—the largest collection yet—topped each of the nine benchmarks, setting records in five of them (including the two new benchmarks).

“If you just throw hardware at the problem, it’s not a given that you’re going to improve.” —Dave Salvator, Nvidia

The 11,616-H100 system is “the biggest we’ve ever done,” says Dave Salvator, director of accelerated computing products at Nvidia. It smashed through the GPT-3 training trial in less than 3.5 minutes. A 512-GPU system, for comparison, took about 51 minutes. (Note that the GPT-3 task is not a full training, which could take weeks and cost millions of dollars. Instead, the computers train on a representative portion of the data, at an agreed-upon point well before completion.)

Compared to Nvidia’s largest entrant on GPT-3 last year, a 3,584 H100 computer, the 3.5-minute result represents a 3.2-fold improvement. You might expect that just from the difference in the size of these systems, but in AI computing that isn’t always the case, explains Salvator. “If you just throw hardware at the problem, it’s not a given that you’re going to improve,” he says.

“We are getting essentially linear scaling,” says Salvator. By that he means that twice as many GPUs lead to a halved training time. “[That] represents a great achievement from our engineering teams,” he adds.

Competitors are also getting closer to linear scaling. This round Intel deployed a system using 1,024 GPUs that performed the GPT-3 task in 67 minutes versus a computer one-fourth the size that took 224 minutes six months ago. Google’s largest GPT-3 entry used 12-times the number of TPU v5p accelerators as its smallest entry and performed its task nine times as fast.

Linear scaling is going to be particularly important for upcoming “AI factories” housing 100,000 GPUs or more, Salvator says. He says to expect one such data center to come online this year, and another, using Nvidia’s next architecture, Blackwell, to startup in 2025.

Nvidia’s streak continues

Nvidia continued to boost training times despite using the same architecture, Hopper, as it did in last year’s training results. That’s all down to software improvements, says Salvator. “Typically, we’ll get a 2-2.5x [boost] from software after a new architecture is released,” he says.

For GPT-3 training, Nvidia logged a 27 percent improvement from the June 2023 MLPerf benchmarks. Salvator says there were several software changes behind the boost. For example, Nvidia engineers tuned up Hopper’s use of less accurate, 8-bit floating point operations by trimming unnecessary conversions between 8-bit and 16-bit numbers and better targeting of which layers of a neural network could use the lower precision number format. They also found a more intelligent way to adjust the power budget of each chip’s compute engines, and sped communication among GPUs in a way that Salvator likened to “buttering your toast while it’s still in the toaster.”

Additionally, the company implemented a scheme called flash attention. Invented in the Stanford University laboratory of Samba Nova founder Chris Re, flash attention is an algorithm that speeds transformer networks by minimizing writes to memory. When it first showed up in MLPerf benchmarks, flash attention shaved as much as 10 percent from training times. (Intel, too, used a version of flash attention but not for GPT-3. It instead used the algorithm for one of the new benchmarks, fine-tuning.)

Using other software and network tricks, Nvidia delivered an 80 percent speedup in the text-to-image test, Stable Diffusion, versus its submission in November 2023.

New benchmarks

MLPerf adds new benchmarks and upgrades old ones to stay relevant to what’s happening in the AI industry. This year saw the addition of fine-tuning and graph neural networks.

Fine tuning takes an already trained LLM and specializes it for use in a particular field. Nvidia, for example took a trained 43-billion-parameter model and trained it on the GPU-maker’s design files and documentation to create ChipNeMo, an AI intended to boost the productivity of its chip designers. At the time, the company’s chief technology officer Bill Dally said that training an LLM was like giving it a liberal arts education, and fine tuning was like sending it to graduate school.

The MLPerf benchmark takes a pretrained Llama-2-70B model and asks the system to fine tune it using a dataset of government documents with the goal of generating more accurate document summaries.

There are several ways to do fine-tuning. MLPerf chose one called low-rank adaptation (LoRA). The method winds up training only a small portion of the LLM’s parameters leading to a 3-fold lower burden on hardware and reduced use of memory and storage versus other methods, according to the organization.

The other new benchmark involved a graph neural network (GNN). These are for problems that can be represented by a very large set of interconnected nodes, such as a social network or a recommender system. Compared to other AI tasks, GNNs require a lot of communication between nodes in a computer.

The benchmark trained a GNN on a database that shows relationships about academic authors, papers, and institutes—a graph with 547 million nodes and 5.8 billion edges. The neural network was then trained to predict the right label for each node in the graph.

Future fights

Training rounds in 2025 may see head-to-head contests comparing new accelerators from AMD, Intel, and Nvidia. AMD’s MI300 series was launched about six months ago, and a memory-boosted upgrade the MI325x is planned for the end of 2024, with the next generation MI350 slated for 2025. Intel says its Gaudi 3, generally available to computer makers later this year, will appear in MLPerf’s upcoming inferencing benchmarks. Intel executives have said the new chip has the capacity to beat H100 at training LLMs. But the victory may be short-lived, as Nvidia has unveiled a new architecture, Blackwell, which is planned for late this year.

❌