Reading view

There are new articles available, click to refresh the page.

How AI can help spot wildfires

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

In February 2024, a broken utility pole brought down power lines near the small town of Stinnett, Texas. In the following weeks, the fire reportedly sparked by that equipment grew to burn over 1 million acres, the biggest wildfire in the state’s history.

Anything from stray fireworks to lightning strikes can start a wildfire. While it’s natural for many ecosystems to see some level of fire activity, the hotter, drier conditions brought on by climate change are fueling longer fire seasons with larger fires that burn more land.

This means that the need to spot wildfires earlier is becoming ever more crucial, and some groups are turning to technology to help. My colleague James Temple just wrote about a new effort from Google to fund an AI-powered wildfire-spotting satellite constellation. Read his full story for the details, and in the meantime, let’s dig into how this project fits into the world of fire-detection tech and some of the challenges that lie ahead.

The earliest moments in the progression of a fire can be crucial. Today, many fires are reported to authorities by bystanders who happen to spot them and call emergency services. Technologies could help officials by detecting fires earlier, well before they grow into monster blazes.

One such effort is called FireSat. It’s a project from the Earth Fire Alliance, a collaboration between Google’s nonprofit and research arms, the Environmental Defense Fund, Muon Space (a satellite company), and others. This planned system of 52 satellites should be able to spot fires as small as five by five meters (about 16 feet by 16 feet), and images will refresh every 20 minutes.

These wouldn’t be the first satellites to help with wildfire detection, but many existing efforts can either deliver high-resolution images or refresh often—not both, as the new project is aiming to do.

A startup based in Germany, called OroraTech, is also working to launch new satellites that specialize in wildfire detection. The small satellites (around the size of a shoebox) will orbit close to Earth and use sensors that detect heat. The company’s long-term goal is to launch 100 of the satellites into space and deliver images every 30 minutes.

Other companies are staying on Earth, deploying camera stations that can help officials identify, confirm, and monitor fires. Pano AI is using high-tech camera stations to try to spot fires earlier. The company mounts cameras on high vantage points, like the tops of mountains, and spins them around to get a full 360-degree view of the surrounding area. It says the tech can spot wildfire activity within a 15-mile radius. The cameras pair up with algorithms to automatically send an alert to human analysts when a potential fire is detected.

Having more tools to help detect wildfires is great. But whenever I hear about such efforts, I’m struck by a couple of major challenges for this field. 

First, prevention of any sort can often be undervalued, since a problem that never happens feels much less urgent than one that needs to be solved.

Pano AI, which has a few camera stations deployed, points to examples in which its technology detected fires earlier than bystander reports. In one case in Oregon, the company’s system issued a warning 14 minutes before the first emergency call came in, according to a report given to TechCrunch.

Intuitively, it makes sense that catching a blaze early is a good thing. And modeling can show what might have happened if a fire hadn’t been caught early. But it’s really difficult to determine the impact of something that didn’t happen. These systems will need to be deployed for a long time, and researchers will need to undertake large-scale, systematic studies, before we’ll be able to say for sure how effective they are at preventing damaging fires. 

The prospect of cost is also a tricky piece of this for me to wrap my head around. It’s in the public interest to prevent wildfires that will end up producing greenhouse-gas emissions, not to mention endangering human lives. But who’s going to pay for that?

Each of PanoAI’s stations costs something like $50,000 per year. The company’s customers include utilities, which have a vested interest in making sure their equipment doesn’t start fires and watching out for blazes that could damage its infrastructure.

The electric utility Xcel, whose equipment allegedly sparked that fire in Texas earlier this year, is facing lawsuits over its role. And utilities can face huge costs after fires. Last year’s deadly blazes in Hawaii caused billions of dollars in damages, and Hawaiian Electric recently agreed to pay roughly $2 billion for its role in those fires. 

The proposed satellite system from the Earth Fire Alliance will cost more than $400 million all told. The group has secured about two-thirds of what it needs for the first phase of the program, which includes the first four launches, but it’ll need to raise a lot more money to make its AI-powered wildfire-detecting satellite constellation a reality.


Now read the rest of The Spark

Related reading

Read more about how an AI-powered satellite constellation can help spot wildfires faster here

Other companies are aiming to use balloons that will surf on wind currents to track fires. Urban Sky is deploying balloons in Colorado this year

Satellite images can also be used to tally up the damage and emissions caused by fires. Earlier this year I wrote about last year’s Canadian wildfires, which produced more emissions than the fossil fuels in most countries in 2023. 

Another thing

We’re just two weeks away from EmTech MIT, our signature event on emerging technologies. I’ll be on stage speaking with tech leaders on topics like net-zero buildings and emissions from Big Tech. We’ll also be revealing our 2024 list of Climate Tech Companies to Watch. 

For a preview of the event, check out this conversation I had with MIT Technology Review executive editor Amy Nordrum and editor in chief Mat Honan. You can register to join us on September 30 and October 1 at the MIT campus or online—hope to see you there!

Keeping up with climate  

The US Postal Service is finally getting its long-awaited electric vehicles. They’re funny-looking, and the drivers seem to love them already. (Associated Press)

→ Check out this timeline I made in December 2022 of the multi-year saga it took for the agency to go all in on EVs. (MIT Technology Review)

Microsoft is billing itself as a leader in AI for climate innovation. At the same time, the tech giant is selling its technology to oil and gas companies. Check out this fascinating investigation from my former colleague Karen Hao. (The Atlantic)

Imagine solar panels that aren’t affected by a cloudy day … because they’re in space. Space-based solar power sounds like a dream, but advances in solar tech and falling launch costs have proponents arguing that it’s a dream closer than ever to becoming reality. Many are still skeptical. (Cipher)

Norway is the first country with more EVs on the road than gas-powered cars. Diesel vehicles are still the most common, though. (Washington Post

The emissions cost of delivering Amazon packages keeps ticking up. A new report from Stand.earth estimates that delivery emissions have increased by 75% since just 2019. (Wired)

BYD has been dominant in China’s EV market. The company is working to expand, but to compete in the UK and Europe, it will need to win over wary drivers. (Bloomberg)

Some companies want to make air-conditioning systems in big buildings smarter to help cut emissions. Grid-interactive efficient buildings can cut energy costs and demand at peak hours. (Canary Media)

Google is funding an AI-powered satellite constellation that will spot wildfires faster

Early next year, Google and its partners plan to launch the first in a series of satellites that together would provide close-up, frequently refreshed images of wildfires around the world, offering data that could help firefighters battle blazes more rapidly, effectively, and safely.

The online search giant’s nonprofit and research arms have collaborated with the Moore Foundation, the Environmental Defense Fund, the satellite company Muon Space, and others to deploy 52 satellites equipped with custom-developed sensors over the coming years. 

The FireSat satellites will be able to spot fires as small as 5 by 5 meters (16 by 16 feet) on any speck of the globe. Once the full constellation is in place, the system should be capable of updating those images about every 20 minutes, the group says.

Those capabilities together would mark a significant upgrade over what’s available from the satellites that currently provide data to fire agencies. Generally, they can provide either high-resolution images that aren’t updated rapidly enough to track fires closely or frequently refreshed images that are relatively low-resolution.

The Earth Fire Alliance collaboration will also leverage Google’s AI wildfire tools, which have been trained to detect early indications of wildfires and track their progression, to draw additional insights from the data.

The images and analysis will be provided free to fire agencies around the world, helping to improve understanding of where fires are, where they’re moving, and how hot they’re burning. The information could help agencies stamp out small fires before they turn into raging infernos, place limited firefighting resources where they’ll do the most good, and evacuate people along the safest paths.

“In the satellite image of the Earth, a lot of things can be mistaken for a fire: a glint, a hot roof, smoke from another fire,” says Chris Van Arsdale, climate and energy research lead at Google Research and chairman of the Earth Fire Alliance. “Detecting fires becomes a game of looking for needles in a world of haystacks. Solving this will enable first responders to act quickly and precisely when a fire is detected.”

Some details of FireSat were unveiled earlier this year. But the organizations involved will announce additional information about their plans today, including the news that Google.org, the company’s charitable arm, has provided $13 million to the program and that the inaugural launch is scheduled to occur next year. 

Reducing the fog of war

The news comes as large fires rage across millions of acres in the western US, putting people and property at risk. The blazes include the Line Fire in Southern California, the Shoe Fly Fire in central Oregon, and the Davis Fire south of Reno, Nevada.

Wildfires have become more frequent, extreme, and dangerous in recent decades. That, in part, is a consequence of climate change: Rising temperatures suck the moisture from trees, shrubs, and grasses. But fires increasingly contribute to global warming as well. A recent study found that the fires that scorched millions of acres across Canada last year pumped out 3 billion tons of carbon dioxide, four times the annual pollution produced by the airline industry.

treeline with raging fire and sky botted out with smoke
GOOGLE

Humans have also increased fire risk by suppressing natural fires for decades, which has allowed fuel to build up in forests and grasslands, and by constructing communities on the edge of wilderness boundaries without appropriate rules, materials, and safeguards

Observers say that FireSat could play an important role in combating fires, both by enabling fire agencies to extinguish small ones before they grow into large ones and by informing effective strategies for battling them once they’re crossed that point.

“What these satellites will do is reduce the fog of war,” says Michael Wara, director of the climate and energy policy program at Stanford University’s Woods Institute for the Environment, who is focused on fire policy issues. “Like when a situation is really dynamic and very dangerous for firefighters and they’re trying to make decisions very quickly about whether to move in to defend structures or try to evacuate people.” 

(Wara serves on the advisory board of the Moore Foundation’s Wildfire Resilience Initiative.)

Some areas, like California, already have greater visibility into the current state of fires or early signs of outbreaks, thanks to technology like Department of Defense satellites, remote camera networks, and planes, helicopters, and drones. But FireSat will be especially helpful for “countries that have less-well-resourced wildland fighting capability,” Wara adds.

Better images, more data, and AI will not be able to fully counter the increased fire dangers. Wara and other fire experts argue that regions need to use prescribed burns and other efforts to more aggressively reduce the buildup of fuel, rethink where and how we build communities in fire-prone areas, and do more to fund and support the work of firefighters on the ground. 

Sounding an earlier alarm for fires will only help reduce dangers when regions have, or develop, the added firefighting resources needed to combat the most dangerous ones quickly and effectively. Communities will also need to put in place better policies to determine what types of fires should be left to burn, and under what conditions.

‘A game changer’

Kate Dargan Marquis, a senior wildfire advisor to the Moore Foundation who previously served as state fire marshal for California, says she can “personally attest” to the difference that such tools will make to firefighters in the field.

“It is a game changer, especially as wildfires are becoming more extreme, more frequent, and more dangerous for everyone,” she says. “Information like this will make a lifesaving difference for firefighters and communities around the globe.”

Kate Dargan Marquis, senior advisor, Moore Foundation.
GOOGLE

Google Research developed the sensors for the satellite and tested them as well as the company’s AI fire detection models by conducting flights over controlled burns in California. Google intends to work with Earth Fire Alliance “to ensure AI can help make this data as useful as possible, and also that wildfire information is shared as widely as possible,” the company said.

Google’s Van Arsdale says that providing visual images of every incident around the world from start to finish will be enormously valuable to scientists studying wildfires and climate change. 

“We can combine this data with Google’s existing models of the Earth to help advance our understanding of fire behavior and fire dynamics across all of Earth’s ecosystems,” he says. “All this together really has the potential to help mitigate the environmental and social impact of fire while also improving people’s health and safety.”

Specifically, it could improve assessments of fire risk, as well as our understanding of the most effective means of preventing or slowing the spread of fires. For instance, it could help communities determine where it would be most cost-effective to remove trees and underbrush. 

Figuring out the best ways to conduct such interventions is another key goal of the program, given their high cost and the limited funds available for managing wildlands, says Genny Biggs, the program director for the Moore Foundation’s Wildfire Resilience Initiative.

The launch

The idea for FireSat grew out of a series of meetings that began with a 2019 workshop hosted by the Moore Foundation, which provided the first philanthropic funding for the program. 

The first satellite, scheduled to be launched aboard a SpaceX rocket early next year, will be fully functional aside from some data transmission features. The goals of the “protoflight” mission include testing the onboard systems and the data they send back. The Earth Fire Alliance will work with a handful of early-adopter agencies to prepare for the next phases. 

The group intends to launch three fully operational satellites in 2026, with additional deployments in the years that follow. Muon Space will build and operate the satellites. 

Agencies around the world should be able to receive hourly wildfire updates once about half of the constellation is operational, says Brian Collins, executive director of the Earth Fire Alliance. It hopes to launch all 52 satellites by around the end of this decade.

Each satellite is designed to last about five years, so the organization will eventually need to deploy 10 more each year to maintain the constellation.

The Earth Fire Alliance has secured about two-thirds of the funding it needs for the first phase of the program, which includes the first four launches. The organization will need to raise additional money from government agencies, international organizations, philanthropies, and other groups  to deploy, maintain, and operate the full constellation. It estimates the total cost will exceed $400 million, which Collins notes “is 1/1000th of the economic losses due to extreme wildfires annually in the US alone.”

Asked if commercial uses of the data could also support the program, including potentially military ones, Collins said in an email: “Adjacent applications range from land use management and agriculture to risk management and industrial impact and mitigation.” 

“At the same time, we know that as large agencies and government agencies adopt FireSat data to support a broad public safety mandate, they may develop all-hazard, emergenc[y] management, and security related uses of data,” he added. “As long as opportunities are in balance with our charter to advance a global approach to wildfire and climate resilience, we welcome new ideas and applications of our data.”

‘Living with fire’

A wide variety of startups have emerged in recent years promising to use technology to reduce the frequency and severity of wildfires—for example, by installing cameras and sensors in forests and grasslands, developing robots to carry out controlled burns, deploying autonomous helicopters that can drop suppressant, and harnessing AI to predict wildfire behavior and inform forest and fire management strategies

So far, even with all these new tools, it’s still been difficult for communities to keep pace with the rising dangers.

Dargan Marquis—who founded her own wildfire software company, Intterra—says she is confident the incidence of disastrous fires can be meaningfully reduced with programs like FireSat, along with other improved technologies and policies. But she says it’s likely to take decades to catch up with the growing risks, as the world continues warming up.

“We’re going to struggle in places like California, these Mediterranean climates around the world, while our technology and our capabilities and our inventions, etc., catch up with that level of the problem,” she says. 

“We can turn that corner,” she adds. “If we work together on a comprehensive strategy with the right data and a convincing plan over the next 50 years, I do think that by the end of the century, we absolutely can be living with fire.”

This startup is making manure out of other biogas power plants and now has $62M to play with

Working away on his PhD in Munich only a few years ago, Stephan Herrmann (now a doctor) couldn’t have conceived of a time when his idea for a carbon-negative power plant would attract millions in funding. But now, together with Reverion co-founder Felix Fischer, he has a $100 million backlog of orders for his invention […]

© 2024 TechCrunch. All rights reserved. For personal use only.

Meet 2024’s climate innovators under 35

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

One way to know where a field is going? Take a look at what the sharpest new innovators are working on.

Good news for all of us: MIT Technology Review’s list of 35 Innovators Under 35 just dropped. And a decent number of the people who made the list are working in fields that touch climate and energy in one way or another.

Looking through, I noticed a few trends that might provide some hints about the future of climate tech. Let’s dig into this year’s list and consider what these innovators’ work might mean for efforts to combat climate change.

Power to the people

Perhaps unsurprisingly, quite a few innovators on this list are working on energy—and many of them have an interest in making energy consistently available where and when it’s needed. Wind and solar are getting cheap, but we need solutions for when the sun isn’t shining and the wind isn’t blowing.

Tim Latimer cofounded Fervo Energy, a geothermal company hoping to provide consistently available, carbon-free energy using Earth’s heat. You may be familiar with his work, since Fervo was on our list of 15 Climate Tech Companies to Watch in 2023.

Another energy-focused innovator on the list is Andrew Ponec of Antora Energy, a company working to build thermal energy storage systems. Basically, the company’s technology heats up blocks when cheap renewables are available, and then stores that heat and delivers it to industrial processes that need constant power. (You, the readers, named thermal energy storage the readers’ choice on this year’s 10 Breakthrough Technologies list.)

Rock stars

While new ways of generating electricity and storing energy can help cut our emissions in the future, other people are focused on how to clean up the greenhouse gases already in the atmosphere. At this point, removing carbon dioxide from the atmosphere is basically required for any scenario where we limit warming to 1.5 °C over preindustrial levels. A few of the new class of innovators are turning to rocks for help soaking up and locking away atmospheric carbon. 

Noah McQueen cofounded Heirloom Carbon Technologies, a carbon removal company. The technology works by tweaking the way minerals soak up carbon dioxide from the air (before releasing it under controlled conditions, so they can do it all again). The company has plans for facilities that could remove hundreds of thousands of tons of carbon dioxide each year. 

Another major area of research focuses on how we might store captured carbon dioxide. Claire Nelson is the cofounder of Cella Mineral Storage, a company working on storage methods to better trap carbon dioxide underground once it’s been mopped up.  

Material world

Finally, some of the most interesting work on our new list of innovators is in materials. Some people are finding new ones that could help us address our toughest problems, and others are trying to reinvent old ones to clean up their climate impacts.

Julia Carpenter found a way to make a foam-like material from metal. Its high surface area makes it a stellar heat sink, meaning it can help cool things down efficiently. It could be a huge help in data centers, where 40% of energy demand goes to cooling.

And I spoke with Cody Finke, cofounder and CEO of Brimstone, a company working on cleaner ways of making cement. Cement alone is responsible for nearly 7% of global greenhouse-gas emissions, and about half of those come from chemical reactions necessary to make it. Finke and Brimstone are working to wipe out the need for these reactions by using different starting materials to make this crucial infrastructural glue.

Addressing climate change is a sprawling challenge, but the researchers and founders on this list are tackling a few of the biggest issues I think about every day. 

Ensuring that we can power our grid, and all the industrial processes that we rely on for the stuff in our daily lives, is one of the most substantial remaining challenges. Removing carbon dioxide from the atmosphere in an efficient, cheap process could help limit future warming and buy us time to clean up the toughest sectors. And finding new materials, and new methods of producing old ones, could be a major key to unlocking new climate solutions. 

To read more about the folks I mentioned here and other innovators working in climate change and beyond, check out the full list.


Now read the rest of The Spark

Related reading

Fervo Energy (cofounded by 2024 innovator Tim Latimer) showed last year that its wells can be used like a giant underground battery.

A growing number of companies—including Antora Energy, whose CEO Andrew Ponec is a 2024 innovator—are working to bring thermal energy storage systems to heavy industry.

Cement is one of our toughest challenges, as Brimstone CEO and 2024 innovator Cody Finke will tell you. I wrote about Brimstone and other efforts to reinvent cement earlier this year.

A plant with yellow flowers

Another thing

We need a whole lot of metals to address climate change, from the copper in transmission lines to the nickel in lithium-ion batteries that power electric vehicles. Some researchers think plants might be able to help. 

Roughly 750 species of plants are so-called hyperaccumulators, meaning they naturally soak up and tolerate relatively high concentrations of metal. A new program is funding research into how we might use this trait to help source nickel, and potentially other metals, in the future. Read the full story here.

Keeping up with climate  

A hurricane that recently formed in the Gulf of Mexico is headed for Louisiana, ending an eerily quiet few weeks of the season. (Scientific American)

→ After forecasters predicted a particularly active season, the lull in hurricane activity was surprising. (New Scientist)

Rising sea levels are one of the symptoms of a changing climate, but nailing down exactly what “sea level” means is more complicated than you might think. We’ve gotten better at measuring sea level over the past few centuries, though. (New Yorker)

The US Department of Energy’s Loan Programs Office has nearly $400 million in lending authority. This year’s election could shift the focus of that office drastically, making it a bellwether of how the results could affect energy priorities. (Bloomberg)

What if fusion power ends up working, but it’s too expensive to play a significant role on the grid? Some modelers think the technology will remain expensive and could come too late to make a dent in emissions. (Heatmap)

Electric-vehicle sales are up overall, but some major automakers are backing away from goals on zero-emissions vehicles. Even though sales are increasing, uptake is slower than many thought it would be, contributing to the nervous energy in the industry. (Canary Media)

It’s a tough time to be in the business of next-generation batteries. The woes of three startups reveal that difficult times are here, likely for a while. (The Information)

Greener Steel Production Requires More Electrochemical Engineers



In the 1800s, aluminum was considered more valuable than gold or silver because it was so expensive to produce the metal in any quantity. Thanks to the Hall-Héroult smelting process, which pioneered the electrochemical reduction of aluminum oxide in 1886, electrochemistry advancements made aluminum more available and affordable, rapidly transforming it into a core material used in the manufacturing of aircraft, power lines, food-storage containers and more.

As society mobilizes against the pressing climate crisis we face today, we find ourselves seeking transformative solutions to tackle environmental challenges. Much as electrochemistry modernized aluminum production, science holds the key to revolutionizing steel and iron manufacturing.

Electrochemistry can help save the planet

As the world embraces clean energy solutions such as wind turbines, electric vehicles, and solar panels to address the climate crisis, changing how we approach manufacturing becomes critical. Traditional steel production—which requires a significant amount of energy to burn fossil fuels at temperatures exceeding 1,600 °C to convert ore into iron—currently accounts for about 10 percent of the planet’s annual CO2 emissions. Continuing with conventional methods risks undermining progress toward environmental goals.

Scientists already are applying electrochemistry—which provides direct electrical control of oxidation-reduction reactions—to convert ore into iron. The conversion is an essential step in steel production and the most emissions-spewing part. Electrochemical engineers can drive the shift toward a cleaner steel and iron industry by rethinking and reprioritizing optimizations.

When I first studied engineering thermodynamics in 1998, electricity—which was five times the price per joule of heat—was considered a premium form of energy to be used only when absolutely required.

Since then the price of electricity has steadily decreased. But emissions are now known to be much more harmful and costly.

Engineers today need to adjust currently accepted practices to develop new solutions that prioritize mass efficiency over energy efficiency.

In addition to electrochemical engineers working toward a cleaner steel and iron industry, advancements in technology and cheaper renewables have put us in an “electrochemical moment” that promises change across multiple sectors.

The plummeting cost of photovoltaic panels and wind turbines, for example, has led to more affordable renewable electricity. Advances in electrical distribution systems that were designed for electric vehicles can be repurposed for modular electrochemical reactors.

Electrochemistry holds the potential to support the development of clean, green infrastructure beyond batteries, electrolyzers, and fuel cells. Electrochemical processes and methods can be scaled to produce metals, ceramics, composites, and even polymers at scales previously reserved for thermochemical processes. With enough effort and thought, electrochemical production can lead to billions of tons of metal, concrete, and plastic. And because electrochemistry directly accesses the electron transfer fundamental to chemistry, the same materials can be recycled using renewable energy.

As renewables are expected to account for more than 90 percent of global electricity expansion during the next five years, scientists and engineers focused on electrochemistry must figure out how best to utilize low-cost wind and solar energy.

The core components of electrochemical systems, including complex oxides, corrosion-resistant metals, and high-power precision power converters, are now an exciting set of tools for the next evolution of electrochemical engineering.

The scientists who came before have created a stable set of building blocks; the next generation of electrochemical engineers needs to use them to create elegant, reliable reactors and other systems to produce the processes of the future.

Three decades ago, electrochemical engineering courses were, for the most part, electives and graduate-level. Now almost every institutional top-ranked R&D center has full tracks of electrochemical engineering. Students interested in the field should take both electroanalytical chemistry and electrochemical methods classes and electrochemical energy storage and materials processing coursework.

Although scaled electrochemical production is possible, it is not inevitable. It will require the combined efforts of the next generation of engineers to reach its potential scale.

Just as scientists found a way to unlock the potential of the abundant, once-unattainable aluminum, engineers now have the opportunity to shape a cleaner, more sustainable future. Electrochemistry has the power to flip the switch to clean energy, paving the way for a world in which environmental harmony and industrial progress go hand in hand.

Andrew Ng’s new model lets you play around with solar geoengineering to see what would happen

AI pioneer Andrew Ng has released a simple online tool that allows anyone to tinker with the dials of a solar geoengineering model, exploring what might happen if nations attempt to counteract climate change by spraying reflective particles into the atmosphere.

The concept of solar geoengineering was born from the realization that the planet has cooled in the months following massive volcanic eruptions, including one that occurred in 1991, when Mt. Pinatubo blasted some 20 million tons of sulfur dioxide into the stratosphere. But critics fear that deliberately releasing such materials could harm certain regions of the world, discourage efforts to cut greenhouse-gas emissions, or spark conflicts between nations, among other counterproductive consequences.

The goal of Ng’s emulator, called Planet Parasol, is to invite more people to think about solar geoengineering, explore the potential trade-offs involved in such interventions, and use the results to discuss and debate our options for climate action. The tool, developed in partnership with researchers at Cornell, the University of California, San Diego, and other institutions, also highlights how AI could help advance our understanding of solar geoengineering. 

The current version is bare-bones. It allows users to select different emissions scenarios and various quantities of particles that would be released each year, from 25% of a Pinatubo eruption to 125%. 

Planet Parasol then displays a pair of diverging lines that represent warming levels globally through 2100. One shows the steady rise in temperatures that would occur without solar geoengineering, and the other indicates how much warming could be reduced under your selected scenario. The model can also highlight regional temperature differences on heat maps.

You can also scribble your own rising, falling, or squiggling line representing different levels of intervention across the decades to see what might happen as reflective aerosols are released.

I tried to simulate what’s known as the “termination shock” scenario, exploring how much temperatures would rise if, for some reason, the world had to suddenly halt or cut back on solar geoengineering after using it at high levels. The sudden surge of warming that could occur afterward is often cited as a risk of geoengineering. The model projects that global temperatures would quickly rise over the following years, though they might take several decades to fully rebound to the curve they would have been on if the nations in this simulation hadn’t conducted such an intervention in the first place. 

To be clear, this is an exaggerated scenario, in which I maxed out the warming and the geoengineering. No one is proposing anything like this. I was playing around to see what would happen because, well, that’s what an emulator lets you do.

You can give it a try yourself here

Emulators are effectively stripped-down climate models. They’re not as precise, since they don’t simulate as many of the planet’s complex, interconnected processes. But they don’t require nearly as much time and computing power to run.

International negotiators and policymakers often use climate emulators, like En-ROADS, to get a quick, rough sense of the impact that potential rules or commitments on greenhouse-gas emissions could have. 

The Parasol team wanted to develop a similar tool specifically to allow people to evaluate the potential effects of various solar geoengineering scenarios, says Daniele Visioni, a climate scientist focused on solar geoengineering at Cornell, who contributed to Planet Parasol (as well as an earlier emulator).

Climate models are steadily becoming more powerful, simulating more Earth system processes at higher resolutions, and spitting out more and more information as they do. AI is well suited to help draw meaning and understanding from that data. It’s getting ever better at spotting patterns within huge data sets and predicting outcomes based on them.

Ng’s machine-learning group at Stanford has applied AI to a growing list of climate-related subjects. Among other projects, it has developed tools to identify sources of methane emissions, recognize the drivers of deforestation, and forecast the availability of solar energy. Ng also helps oversee the AI for Climate Change bootcamp at the university.

But he says he’s been spending more and more of his time exploring the potential of solar geoengineering (sometimes referred to as solar radiation management, or SRM), given the threat of climate change and the role that AI can play in advancing the research field. 

There are “many things one can do—and that society broadly should work on—to help address climate change, first and foremost decarbonization,” he wrote in an email. “And SRM is where I’m focusing most of my climate-related efforts right now, given that this is one of the places where engineers and researchers can make a big difference (in addition to decarbonization).”

In a 2022 piece, Ng noted that AI could play several important roles in geoengineering research, including “autonomously piloting high-altitude drones” that would disperse reflective particles, modeling effects of geoengineering across specific regions, and optimizing techniques. 

Planet Parasol itself is built on top of another climate emulator, developed by researchers at the University of Leeds and the University of Oxford, that relies on the rules of physics to project global average temperatures under various scenarios. Ng’s team then harnessed machine learning to estimate the local cooling effects that could result from varying levels of solar geoengineering, says Jeremy Irvin, a grad student in his research group at Stanford.

One of the clearest limits of the current version of the tool, however, is that the results look dazzling. In the scenarios I tested, solar geoengineering cleanly cuts off the predicted rise in temperatures over the coming decades, which it may well do. 

That might lead the casual user of such a tool to conclude: Cool, let’s do it!

But even if solar geoengineering does help the world on average, it could still have negative effects, such as harming the protective ozone layer, disturbing regional rainfall patterns, undermining agriculture productivity, and changing the distribution of infectious diseases. 

None of that is incorporated in the results as yet. Plus, a climate emulator isn’t equipped to address deeply complex societal concerns. For instance, does researching such possibilities ease pressure to address the root causes of climate change? Can a tool that works at the scale of the planet ever be managed in a globally equitable way? Planet Parasol won’t be able to answer either of those questions.

Holly Buck, an environmental social scientist at the University at Buffalo and author of After Geoengineering, questioned the broader value of such a tool along similar lines.

In focus groups that she has conducted on the topic of solar geoengineering, she’s found that people easily grok the concept that it can curb warming, even without seeing the results plotted out in a model.

“They want to hear about what can go wrong, the impact on precipitation and extreme weather, who will control it, what it means existentially to fail to deal with the root of the problem, and so on,” she said in an email. “So it is hard to imagine who would actually use this and how.”

Visioni explained that the group did make a point of highlighting major challenges and concerns at the top of the page. He added that they intend to improve the tool over time in ways that will provide a fuller sense of the uncertainties, trade-offs, and regional impacts.

“This is hard, and I struggled a lot with your same observation,” Visioni wrote in an email. “But at the same time … I came to the conclusion it’s worth putting something down and work[ing] to improve it with user feedback, rather than wait until we have the perfect, nuanced version.”

As to the value of the tool, Irvin added that seeing the temperature reduction laid out clearly can make a “stronger, lasting impression.” 

“We are calling for more research to push the science forward about other areas of concern prior to potential implementation, and we hope the tool helps people understand the capabilities of SAI and support future research on it,” he said.

Want to understand the future of technology? Take a look at this one obscure metal.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

On a sunny morning in late spring, I found myself carefully examining an array of somewhat unassuming-looking rocks at the American Museum of Natural History. 

I’ve gotten to see some cutting-edge technologies as a reporter, from high-tech water treatment plants to test nuclear reactors. Peering at samples of dusty reddish monazite and speckled bastnäsite, I saw the potential for innovation there, too. That’s because all the minerals spread out across the desk contain neodymium, a rare earth metal that’s used today in all sorts of devices, from speakers to wind turbines. And it’s likely going to become even more crucial in the future. 

By the time I came to the museum to see some neodymium for myself, I’d been thinking (or perhaps obsessing) about the metal for months—basically since I’d started reporting a story for our upcoming print issue that is finally out online. The story takes a look at what challenges we’ll face with materials for the next century, and neodymium is center stage. Let’s take a look at why I spent so long thinking about this obscure metal, and why I think it reveals so much about the future of technology. 

In the new issue of our print magazine, MIT Technology Review is celebrating its 125th anniversary. But rather than look back to our 1899 founding, the team decided to look forward to the next 125 years. 

I’ve been fascinated with topics like mining, recycling, and alternative technologies since I’ve been reporting on climate. So when I started thinking about the distant future, my mind immediately went to materials. What kind of stuff will we need? Will there be enough of it? How does tech advancement change the picture?

Zooming out to the 2100s and beyond changed the stakes and altered how I thought about some of the familiar topics I’ve been reporting on for years. 

For example, we have enough of the stuff we need to power our world with renewables. But in theory, there is some future point at which we could burn through our existing resources. What happens then? As it turns out, there’s more uncertainty about the amount of resources available than you might imagine. And we can learn a lot from previous efforts to project when the supply of fossil fuels will begin to run out, a concept known as peak oil. 

We can set up systems to reuse and recycle the metals that are most important for our future. These facilities could eventually help us mine less and make material supply steadier and even cheaper. But what happens when the technology these facilities are designed to recycle inevitably changes, possibly rendering old setups obsolete? Predicting what materials will be important, and adjusting efforts to make and reuse them, is complicated to say the least. 

To try to answer these massive questions, I took a careful look at one particular metal: neodymium. It’s a silvery-white rare earth metal, central to powerful magnets that are at the heart of many different technologies, both in the energy sector and beyond. 

Neodymium can stand in for many of the challenges and opportunities we face with materials in the coming century. We’re going to need a lot more of it in the near future, and we could run into some supply constraints as we race to mine enough to meet our needs. It’s possible to recycle the metal to cut down on the extraction needed in the future, and some companies are already trying to set up the infrastructure to do so. 

The world is well on its way to adapting to conditions that are a lot more neodymium-centric. But at the same time, efforts are already underway to build technologies that wouldn’t need neodymium at all. If companies are able to work out an alternative, it could totally flip all our problems, as well as efforts to solve them, upside down. 

Advances in technology can shift the materials we need, and our material demands can push technology to develop in turn. It’s a loop, one that we need to attempt to understand and untangle as we move forward. I hope you’ll read my attempt to start doing that in my feature story here


Now read the rest of The Spark

Related reading

For a more immediate look at the race to produce rare earth metals, check out this feature story by Mureji Fatunde from January. 

I started thinking more deeply about material demand when I was reporting stories about recycling, including this 2023 feature on the battery recycling company Redwood Materials. 

For one example of how companies are trying to develop new technologies that’ll change the materials we need in the future, check out this story about rare-earth-free magnets from earlier this year. 

Another thing

“If we rely on hope, we give up agency. And that may be seductive, but it’s also surrender.”

So writes Lydia Millet, author of over a dozen books, in a new essay about the emotions behind fighting for a future beyond climate change. It was just published online this week. It’s also featured in our upcoming print issue, and I’d highly recommend it. 

Keeping up with climate  

For a look inside what it’s really like to drive a hydrogen car, this reporter rented one and took it on a road trip, speaking to drivers along the way. (The Verge)

→ Here’s why electric vehicles are beating out hydrogen-powered ones in the race to clean up transportation. (MIT Technology Review)

As temperatures climb, we’ve got a hot steel problem on our hands. Heat can cause steel, as well as other materials like concrete, to expand or warp, which can cause problems from slowing down trains to reducing the amount of electricity that power lines can carry. (The Atlantic)

Oakland is the first city in the US running all-electric school buses. And the vehicles aren’t only ferrying kids around; they’re also able to use their batteries to help the grid when it’s needed. (Electrek)

Form Energy plans to build the largest battery installation in the world in Maine. The system, which will use the company’s novel iron-air chemistry, will be capable of storing 8,500 megawatt-hours’ worth of energy. (Canary Media)

→ We named Form one of our 15 Climate Tech companies to watch in 2023. (MIT Technology Review)

In one of the more interesting uses I’ve seen for electric vehicles, Brussels has replaced horse-drawn carriages with battery-powered ones. They look a little like old-timey cars, and operators say business hasn’t slowed down since the switch. (New York Times)

Homeowners are cashing in on billions of dollars in tax credits in the US. The money, which rewards use of technologies that help make homes more energy efficient and cut emissions, is disproportionately going to wealthier households. (E&E News)

Airlines are making big promises about using new jet fuels that can help cut emissions. Much of the industry aims to reach 10% alternative fuel use by the end of the decade. Actual rates hit 0.17% in 2023. (Bloomberg)

Solar farms can’t get enough sheep—they’re great landscaping partners. Soon, 6,000 sheep will be helping keep the grass in check between panels in what will be the largest solar grazing project in the US. (Canary Media)

This rare earth metal shows us the future of our planet’s resources

Leaving aside meteorites that strike Earth’s surface and spacecraft that get flung out of its orbit, the quantity of materials available on this planet isn’t really changing all that much.

That simple fact of our finite resources becomes clearer and more daunting as the pace of technological change advances and our society requires an ever wider array of material inputs to sustain it. So for nearly as long as we’ve systematically extracted these substances, we’ve been trying to predict how long they will be able to meet our demand. How much can we pump from a well, or wrest from a mine, before we need to reconsider what we’re building and how? 

Those predictions have grown increasingly complicated. And now it’s also a matter of how much we can pull from manufactured and discarded objects. Can we recycle parts of that iPhone, or the guts of that massive wind turbine? How much of any given object can we recirculate into our churning technological economy? 

Estimates of how much material we’ll have access to in the future tend to have a tricky, often implicit assumption at their center: that we’ll be making roughly the same products with the same materials as today. But technology moves quickly, and by the time we understand what we might need next, or develop a specialized system to mine or recycle it, the next generation of tech might render all our assumptions obsolete. 

We’re in the middle of a potentially transformative moment. The materials we need to power our world are beginning to shift from fossil fuels to energy sources that don’t produce the greenhouse-gas emissions changing our climate. Metals discovered barely more than a century ago now underpin the technologies we’re relying on for cleaner energy, and not having enough of them could slow progress. 

Take neodymium, one of the rare earth metals. While far from a household name, it’s a metal that humans have relied on for generations. Since the early 20th century, neodymium has been used to give decorative glass a purplish hue. Today, it’s used in cryogenic coolers to reach ultra-low temperatures needed for devices like superconductors and in high-powered magnets that power everything from smartphones to wind turbines. 

Demand for neodymium-based magnets could outstrip supply in the coming decade. The longer-term prospects for the metal’s supply aren’t as dire, but a careful look at neodymium’s potential future reveals many of the challenges we’ll likely face across the supply chain for materials in the coming century and beyond. 

Peak panic

Before we get into our material future, it’s important to point out just how hard it’s always been to make accurate predictions of this kind. Just look at our continuous theorizing about the supply of fossil fuels. 

One version of the story, told frequently in economics classes, goes something like this: Given that there’s a limited supply of oil, at some point the world will run out of it. Before then, we should reach some maximum amount of oil extraction, and then production will start an irreversible decline. That high point is known as “peak oil.”

This idea has been traced back as far as the early 1900s, but one of the most famous analyses came from M. King Hubbert, who was a geologist at Shell. In a 1956 paper, Hubbert considered the total amount of oil (and other fossil fuels, like coal and natural gas) that geologists had identified on the planet. From the estimated supply and the amount the world had burned through, he predicted that oil production in the US would peak and begin declining between 1965 and 1970. The peak of world oil production, he predicted, would come a bit later, in 2000. 

For a while, it looked as if Hubbert was right. US oil production increased until 1970, when it reached a dramatic peak. It then declined for decades afterward, until about 2010. But then advances in drilling and fracking techniques unlocked hard-to-reach reserves. Oil production skyrocketed in the US through the 2010s, and as of 2023, the country was producing more oil than ever before

Peak-oil panic has long outlived Hubbert, but every time economists and geologists have predicted that we’ve reached, or are about to reach, the peak of oil production, they’ve missed the mark (so far).

Now there’s a new reason we might see fossil-fuel production actually peak and eventually fall off: the energy transition. That’s shorthand for the grand effort to shift away from energy sources that produce greenhouse gases and toward renewables and other low-carbon options. 

Hubbert’s theory suggested that a fixed supply would force production to decline from a peak. But as the world wakes up to the dangers of climate change, and as low-carbon energy sources like wind, solar, and nuclear take off, we may wind up leaving some coal, oil, and natural gas in the ground. Simply put, production might head back down because of a lack of demand, not a lack of supply. 

Those newly ascendant energy sources, though, are ironically a new source of “peak” panic. Solar panels, wind turbines, and batteries may not require fuel, but they do require a host of metals, including lithium, copper, steel, and rare earths like neodymium. 

neodymium metal ore
Neodymium is crucial for powering many of our devices. And we could be facing a supply crunch.
GETTY IMAGES

If we extract, process, use, and discard these metals, conceptually there must be some point in the future when we run out of them. And as the energy transition has gotten underway, plenty of forecasts have attempted to understand which metals we should worry about and when they might start to be depleted. But experts say that understanding the availability of resources in this sector is much more complicated than picking out a single future peak. 

“The peak modeling thing is something that doesn’t really apply to metals,” says Simon Jowitt, director of the Center for Research in Economic Geology at the University of Nevada, Reno. It’s nearly impossible to understand whether we’ve reached a peak in production for any given material, or even whether those peaks can be predicted, as Jowitt said in a 2020 paper. 

Let’s take a closer look at neodymium. Reserves of the metal—the amount we know about that’s economically feasible to extract—have been estimated at 12.8 million tons. To keep the world from warming more than 1.5 °C over preindustrial levels, we might need as much as 121,000 tons every year just for wind turbines, according to a 2023 study on the material demands of the energy transition. Depending on how much material we assume makes it from the mine into final products, we could burn through those reserves in roughly a century.

If we extract, process, use, and discard these metals, conceptually there must be some point in the future when we run out of them.

The problem with this thinking, though, is that reserves and resources are far from fixed. Geologists discover new deposits all the time, for one thing. And what was considered too expensive and difficult to mine a few decades ago might be possible to extract with today’s technology. So instead of being slowly depleted, those material supplies have roughly kept up with production. 

“We are currently producing more metals than ever before and have more metal resources and reserves than ever before,” as Jowitt put it in his paper.  

And the question, he says, isn’t whether we’ll blow through what’s theoretically available on the planet, or even whether we’ll soon run out of material we can access and mine. It’s whether we’re willing to accept the social, ecological, and geopolitical consequences of how we mine today, and whether we might be able to change those for the better. Because we may be mining a lot more of some materials in the near future. 

Big digs

Demand for rare earths is expected to explode in the coming decades, driven largely by the increased need for neodymium-based magnets. These magnets, commonly made from a mixture of neodymium, iron, and boron with other elements sprinkled in, produce a stronger magnetic field with less material than other magnets available today. 

While demand for neo magnets will likely triple in the coming decade, global production of neodymium will only double, according to Adamas Intelligence, a consulting firm specializing in strategic metals and minerals. It can take close to a decade to build new mines, and those long lead times could contribute to a supply crunch, says Seaver Wang, climate co-­director at the Breakthrough Institute, an environmental think tank.

Short periods when demand outstrips supply can lead to volatility, high prices, and slower deployment of new technologies. In a time as fast-moving as our current energy transition, those challenging economic conditions could have far-reaching effects, potentially entrenching old technologies and stalling progress. 

But despite these expected challenges and the resulting potential for volatility, there is, in theory, plenty of neodymium to go around. Despite their name, most rare earth metals aren’t terribly rare. Many are about as abundant in Earth’s crust as copper, and neodymium is roughly 1,000 times more common in the crust than platinum or gold.

However, unlike those metals, rare earths aren’t often found in concentrated deposits. Getting one ton of metal concentrate can require moving a thousand tons of rocks.   

This mining and refining process can be technically complicated and environmentally damaging, in part because rare earth metals are chemically similar to each other and difficult to separate without using harsh chemicals, says Julie Klinger, an associate professor at the University of Delaware who studies the global market for these materials.

Extraction often relies on dissolving crushed-up ore in strong acid. Mines that don’t carefully contain the waste material and the used chemicals risk polluting local waterways. Rare earth mines also often need to handle radioactive waste, since elements like thorium and uranium are common in and around the minerals that are mined to extract rare earths.

There are efforts underway to mine without producing dangerous waste, and new sites are attempting to squeeze as much finished product out of their initial mined material as possible, reintroducing scraps back into the refining process so less ends up in the waste. Others are taking another look at waste from previous mining efforts. 

But some experts hope to entirely rethink material supply. Instead of extracting new materials, what if we look to what’s already been dug out of the ground? 

Around and around

Follow the path of many commonly used metals, and you’ll likely trace a straight line that leads from the mine to a product and, eventually, to some version of a trash can. In an effort to ease supply concerns and environmental damage, some experts are calling for a new way of using materials, one that focuses on reducing waste or eliminating it altogether. 

Such a system would bend the line that goes from mine to trash into a new shape, so extracted materials are in use for as long as possible—maybe even forever. A whole host of strategies can extend the lifetime of materials, from repairing and refurbishing products to disassembling them and recycling the metals in them once the products are beyond repair.

This can start well before products even get to consumers, by making the most of materials as they’re taken out of the ground. Where recycling really gets difficult is the point at which the materials have left a company and gone into devices, says Ikenna Nlebedim, a research scientist at Ames National Laboratory.

Follow the path of many commonly used metals, and you’ll likely trace a straight line that leads from the mine to a product and, eventually, to some version of a trash can.

Today, a small but difficult-to-quantify fraction of rare earth elements are recycled from products that have reached the end of their useful life. (Many in the industry put the figure at roughly 1%, though there’s little data available on rare earth collection, Nlebedim says.) With the looming increase in expected demand, several companies, including Noveon, REEcycle, and Cyclic Materials, are working to increase that amount, setting up the beginning of a recycling industry.

A major challenge for rising magnet recyclers is that magnets tend to make up a tiny fraction of a product’s total weight. Picking through heaps of products to recover them is an imperfect system, and magnet recyclers are left with other valuable materials that they have no interest in—and no effective process for isolating.

""
Neodymium nitrate photographed under polarized light.
GETTY IMAGES

In the future, economical recycling of rare earths might require a broader infrastructure for recycling the rest of a device, Nlebedim says. A centralized dismantling system would allow the recovery of materials like copper, gold, and platinum group metals that are often found in the same products as rare earths. This setup would allow more of the material in waste products to be reused than is possible now, when a company will go after the highest-­value, easiest-to-extract materials and toss the rest into a shredder. 

Casting a wider net to recover more materials could help create a more stable supply for metals. That could be a major help if the materials considered valuable in the future are different from the ones with the most value today.  

Quick shifts

Technology moves quickly, and many of the materials that are critical to us today weren’t even in use a century ago.

Just look at the history of Mountain Pass Mine, a rare earth mine in California. The mine’s critical product has changed every 20 years or so since production started in 1952, says Michael Rosenthal, cofounder and chief operating officer of MP Materials, the site’s owner.

In the 1960s, Mountain Pass produced the europium used in color television screens of the time. In the following decades the target was cerium, which was useful for the glass used in televisions with cathode ray tubes. Since CRTs have been replaced with new technology like LED screens, demand for cerium has decreased. Now the mine focuses on neodymium and praseodymium, another ingredient sometimes used in magnets.

Yet even as geologists are scouting new mines and companies are springing up to start building recycling systems, researchers are working to make rare earth magnets less central to our technological future, or maybe even obsolete. 

Today, neodymium is necessary in these powerful magnets to wrangle the electrons in iron so that they spin consistently in the same direction, producing a strong magnetic field. There aren’t any alternatives that can match their performance. 

However, there could be options on the way. Niron Magnetics is working to build iron nitride magnets, which produce a powerful magnetic field without the need for any rare earth metals. The company opened its first manufacturing facility in early 2024, and while its products can’t sub in for high-quality neo magnets just yet, there’s no fundamental reason they won’t be able to in the future. If Niron or other companies are able to develop new magnets, it could mean a shift in the rare earth market that quickly makes the current magnet recycling systems irrelevant. 

In a perfectly sustainable world, we would use and reuse materials dug out of the ground indefinitely. But as our technology shifts and our lives change, it can be difficult to end the loop where it began. Instead, our material economy may morph into the shape of a spiral. Resources may not end up quite where they started— rather, the system we’ve set up to extract and use them will continue to chase technological progress, maybe endlessly. 

Fighting for a future beyond the climate crisis

When it comes to climate breakdown and the extinction crisis, the question I get most often is: How can we have hope? 

People ask me this in a range of contexts—in Q&A sessions, in emails, and on podcasts and radio shows, whether I’m doing outreach for my novels, like A Children’s Bible or Dinosaurs, or for nonfiction like We Loved It All, my new memoir. I see numerous iterations of it in the media and my social feeds and hear accounts of its ubiquity from writer friends, scientist and lawyer colleagues, activists and community organizers.

I’ve thought about the impulse behind the asking and am left with the lingering sense that many of us tend, in this cultural moment, to privilege our feelings on these existential threats over reason, say, or moral virtue, or apparently antiquated notions of civic and collective duty. Feelings are the beacon we entrust with shining a path through the fog to guide us home—anger and aggrievement, maybe, on the right of the political spectrum, and on the left something akin to defensive self-righteousness. 

It’s almost as though we lay our fate at the feet of feelings and wait for deliverance.

In the realm of emotion, hope guards against despair, whose rationalized intellectual output is cynicism—a free pass out of the tension of grappling with our responsibility to the future, with the difficulty and possible unpleasantness of engagement and resistance. But like cynicism, hope is its own free pass, filling the space of subjectivity with a passive expectation of relief. For the most part “hope” functions as a unit of rhetoric, as amorphous as “happiness” or “freedom”: a shredded flag in the discourse around climate doomsaying and denial that can only droop over a citadel under relentless siege. If we rely on hope, we give up agency. And that may be seductive, but it’s also surrender.

It’s possible that feelings aren’t our most useful gift. Other animals have feelings too, yet they haven’t radically modified the planet toward unlivability; we’ve done so by pairing our feelings with the unique combination of capabilities that were our species’ answers to the pressures of evolution. These include communication and collaboration, the sophisticated languages we share, our ability to conceptualize a distant past and future and make tools with our opposable thumbs—capacities that, together, have allowed us to construct empires and complex machines and cast our intelligence into the deep sea and the far-off thermosphere. Even beyond the sun. 

Yet the mission we chose to undertake has been one guided by desire and by a framework of ideas we’ve built to justify projecting that desire into the appropriation and liquidation of our resource base. The result has been voracious production and reproduction. Over the course of just a handful of fast-moving centuries, that hysterical vector of taking and making has landed us in a state of emergency that suddenly appears, with a high degree of credibility, poised to bury us under the sea or burn us off the land: in effect to steam open our small envelope of life and peel our paper-thin atmosphere, forests and rivers, grasslands and tundra and reefs and polar icescapes and the creatures they sustain, right off the surface of the world.

To fathom the danger of our situation, to let its immediacy dawn on us and drive us to act, it’s true that emotion is required. But in the stable of emotions to which we have ready access, hope is a pale horse. To spark an understanding of our history of error and push us to reconceive and heal as passionately as we now lay waste, we need to embrace a more extraordinary recognition.

We need shock and awe in the face of the majesty and fragility of nature, humility in the face of the vastness of the transformations our kind has set in motion—a bristling realization of imminent peril, a visceral apprehension of the nonfungibility of our zone of life. Of this marvelous place, infinitesimal in the solar system if not the galaxy, that has given us, on the thin skin of a solitary planet, the combination of flowing water and breathable air that are the preconditions for life. 

Only awe can drive us to work as frenziedly from fear as, it might be argued, we’ve worked from greed until now.

More than ordinary emotions, we need an encounter with the shock of our finitude, a sensation of awe, reverence, and astonishment before the richness and precariousness of being. 

Ordinary emotions let us blunder through the onslaught of information in the slow befuddlement of a stubborn belief that the familiar is bound to persist. But without a swift, far-reaching, and cooperative global effort, the familiar will not persist. Social and political stability will vanish along with biological and geophysical vanishments—the disappearance of coral reefs, for instance, whose absence will denude the oceans of diversity, or the collapse of the AMOC, the Atlantic meridional overturning circulation, under the influx of fresh water from melting ice, which could render Northern Europe inhospitably cold, raise sea levels along the US Eastern Seaboard, and overheat the tropics. 

In the realm of emotion, awe is the prerequisite to action. Not hope. Only awe can drive us to work as frenziedly from fear as, it might be argued, we’ve worked from greed until now. And whether it’s music or nature or art or religion that leaves us awestruck or just a simple decision to suddenly, deeply notice the world beyond ourselves, each of these requires the suspension of chatter—a willingness to halt and stand still within the rushing momentum of daily life. 

If we wish to thrive beyond it, the next century will have to be a time of unmaking and remaking: unmaking the technologies and culture of fossil fuels and their massive, entrenched infrastructure and remaking our template for prosperity from one based on limitless growth into one aimed at accommodation to a delicate biosphere. This means, among other key policy steps, defending and funding reproductive rights, equity, and education both at home and abroad—chiefly for women, since women’s access to education is a central driver of the lower birth rates that will be crucial to living within our means. 

To champion makerdom alone as the answer is to add willful ignorance to hubris. It’s a fact that we need to manufacture and rapidly propagate better tools—energy and food delivery systems that don’t disintegrate our life support to fuel our daily activities—and, equally, it’s a lie that better making by itself can save us or the other life forms we depend on.

Less making and unmaking are also the solution—less making of what we do not need and more unmaking of harmful machines and ideas. The sprawling patrimony of bad ideas—that Homo sapiens reigns supreme over nature and so is miraculously independent of it, in defiance of ecology and physics; that market capitalism is the unassailable apogee of civilization and ongoing expansion the correct communal goal, including endless human procreation cheered on by neoliberal economists who whinge over declining birth rates in industrialized nations—should be dismantled as steadily as the destructive machines. 

Neither the United States nor the world community has mechanisms in place to adequately curb potentially catastrophic enterprise, either when that enterprise is demonstrably causing climate chaos or when it purports to meet the demand for fixes. Treaties made under international law have been famously toothless to date, while the US legal system, which does possess sharp teeth, defers to the legislative bounds established by a Congress deeply beholden to fossil fuels and related industries bent on maintaining the status quo. And that legal system, far from being disposed to address the exceptionally high public health and security risks posed by climate change and extinction, is clearly, through the recent stacking of courts with antigovernment and antiscience jurists, in the business of radically increasing its deference to private actors as it erodes the rights of the dispossessed and the power of federal oversight. 

If we in this country can’t rely on the legislative or judicial branches of our central government to tackle the crises of their own volition, while the executive branch directs, at best, movement toward renewables without movement away from fossils; if we can’t rely on the myopic and nihilistic companies dominating the energy sector to pivot anytime soon; then who remains to help us? To whom can we turn, we who exist, always and only, here and nowhere else, in this walled city of the Earth under such terrible siege? 

The answer may be, for now, only ourselves. Those of us who have language and believe in the wisdom science can offer. Who know the surpassing vulnerability of the rivers and prairies, the jungles and wetlands, the cypress swamps of South Florida, the Cape Floristic Region of South Africa, the Siberian taiga, the Tropical Andes, Madagascar, the island Caribbean. Who can gaze into the future and, beholding the prospect of a frightening and emptier world for our descendants, feel compelled to fight on behalf of the one we have. 

Lydia Millet is the author of more than a dozen novels, including A Children’s Bible; her most recent book, We Loved It All: A Memory of Life, is her first work of nonfiction.

Taiwan Reboots Its Solar-Power Fishponds



A maze of brackish and freshwater ponds covers Taiwan’s coastal plain, supporting aquaculture operations that produce roughly NT $30 billion (US $920 million) worth of seafood every year. Taiwan’s government is hoping that the more than 400 square kilometers of fishponds can simultaneously produce a second harvest: solar power.

What is aquavoltaics?

That’s the impetus behind the new 42.9-megawatt aquavoltaics facility in the southern city of Tainan. To build it, Taipei-based Hongde Renewable Energy bought 57.6 hectares of abandoned land in Tainan’s fishpond-rich Qigu district, created earthen berms to delineate the two dozen ponds, and installed solar panels along the berms and over six reservoir ponds.

Tony Chang, general manager of the Hongde subsidiary Star Aquaculture, says 18 of the ponds are stocked with mullet (prized for their roe) and shrimp, while milkfish help clean the water in the reservoir ponds. In 2023, the first full year of operation, Chang says his team harvested over 100,000 kilograms of seafood. This August, they began stocking a cavernous indoor facility, also festooned with photovoltaics, to cultivate white-legged shrimp.

A number of other countries have been experimenting with aquavoltaics, including China, Chile, Bangladesh, and Norway, extending the concept to large solar arrays floating on rivers and bays. But nowhere else is the pairing of aquaculture and solar power seen as so crucial to the economy. Taiwan is striving to massively expand renewable generation to sustain its semiconductor fabs, and solar is expected to play a large role. But on this densely populated island—slightly larger than Maryland, smaller than the Netherlands—there’s not a lot of open space to install solar panels. The fishponds are hard to ignore. By the end of 2025, the government is looking to install 4.4 gigawatts of aquavoltaics to help meet its goal of 20 GW of solar generation.

Is Taiwan’s aquavoltaics plan unrealistic?

Meanwhile, though, solar developers are struggling to deliver on Taiwan’s ambitious goals, even as some projections suggest Taiwan will need over eight times more solar by 2050. And aquavoltaics in particular have come under scrutiny from environmental groups. In 2020, for example, reporter Cai Jiashan visited 100 solar plants built on agricultural land, including fishponds, and found dozens of cases where solar developers built more solar capacity than the law intended, or secured permits based on promises of continued farming that weren’t kept.

two men in water with a plastic basket with fish Star Aquaculture grows milkfish to help clean water for its breeding ponds.HDRenewables

On 7 July 2020, Taiwan’s Ministry of Agriculture responded by restricting solar development on farmland, in what the solar industry called the “Double-Seven Incident.” Many aquavoltaic projects were canceled while others were delayed. The latter included a 10-MW facility in Tainan that Google had announced to great fanfare in 2019 as its first renewable-energy investment in Asia, to supply power for the company’s Taiwan data centers. The array finally started up in 2023, three years behind schedule.

Critics of Taiwan’s renewed aquavoltaic plans thus see the government’s goal as unrealistic. Yuping Chen, executive director of the Taiwan Environment and Planning Association, a Taipei-based nonprofit dedicated to resolving conflicts between solar energy and agriculture, says of aquavoltaics, “It is claimed to be crucial by the government, but it’s impossible to realize.”

How aquavoltaics could revive fishing, boost revenue

Solar developers and government officials who endorse aquavoltaics argue that such projects could revive the island’s traditional fishing community. Taiwan’s fishing villages are aging and shrinking as younger people take city jobs. Climate change has also taken a toll. Severe storms damage fishpond embankments, while extreme heat and rainfall stress the fish.

4.4


Gigawatts of aquavoltaics that Taiwan wants to install by the end of 2025

Solar development could help reverse these trends. Several recent studies examining fishponds in Taiwan found that adding solar improves profitability, providing an opportunity to reinvigorate communities if agrivoltaic investors share their returns. Alan Wu, deputy director of the Green Energy Initiative at Taiwan’s Industrial Technology Research Institute, says the Hsinchu-based lab has opened a research station in Tainan to connect solar and aquaculture firms. ITRI is helping aquavoltaics facilities boost their revenues by figuring out how they can raise “species of high economic value that are normally more difficult to raise,” Wu says.

Such high-value products include the 27,000 pieces of sun-dried mullet roe that Hongde Renewable Energy’s Tainan site produced last year. The new indoor facility, meanwhile, should boost yields of the relatively pricey whiteleg shrimp. Chang expects the indoor harvests to fetch $500,000 to $600,000 annually, compared to $800,000 to $900,000 from the larger outdoor ponds.

The solar roof over the 100,000-liter indoor growth tanks protects the 2.7 million shrimp against weather and bird droppings. Chang says a patent-pending drain mechanically removes waste from each tank, and also sucks out the shrimp when they’re ready for harvest.

On left, photo of a white bird with a long flat black bill sitting on a rock. On right, photo of a black and white bird standing in tall grass. Land that Star Aquaculture set aside for wildlife now attracts endangered birds like the black-faced spoonbill [left] and the oriental stork [right].iStock (2)

The company has also set aside 9 percent of the site for wildlife, in response to concerns from conservationists. “Egrets, endangered oriental storks, and black-faced spoonbills continue to use the site,” Chang says. “If it was all covered with PV, it could impact their habitat.”

Such measures may not satisfy environmentalists, though. In a review published last month, researchers at Fudan University in Shanghai and two Chinese power firms concluded that China’s floating aquavoltaic installations—some of which already span 5 square kilometers—will “inevitably” alter the marine environment.

Aquavoltaic facilities that are entirely indoors may be an even harder sell as they scale up. Toshiba is backing such a plant in Tainan, to generate 120 MW for an unspecified “semiconductor manufacturer,” with plans for a 360-MW expansion. The resulting buildings could exclude wildlife from 5 square kilometers of habitat. Indoor projects could compensate by protecting land elsewhere. But, as Chen of the Taiwan Environment and Planning Association notes, developers of such sites may not take such measures unless they’re required by law to do so.

The US government is still spending big on climate

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Friday marks two years since the US signed the landmark Inflation Reduction Act (IRA) into law. Now, I’m not usually one to track legislation birthdays. But this particular law is the exception, because it was a game changer for climate technology in the country, and beyond. 

Over the past two years we’ve seen an influx of investment from the federal government, private businesses hoping to get in on the action, and other countries trying to keep up. And now we’re seeing all this money starting to make a difference in the climate tech sector.  

Before we get to the present day, let’s do a quick refresher. In late July 2022, the US Congress reached a massive deal on a tax reform and spending package. The law changed some tax rules, implemented prescription drug pricing reform, and provided some funding for health care and the agency that collects taxes. 

And then there are the climate sections, to the tune of hundreds of billions of dollars of spending. There are tax credits for businesses that build and operate new factories to produce technologies like wind and solar. There are individual tax credits to help people buy electric vehicles, heat pumps, and solar panels. There’s funding to give loans to businesses working to bring their newer technologies into the world. 

Now to the fun part: Where is all that money going?

Some of the funding comes in the form of grants, designed to kick-start domestic manufacturing in areas like batteries for EVs and energy technologies. I wrote about several billion dollars going to companies making battery components and producing their ingredients in October 2022, for example

Tax credits are another huge chunk of the bill, and it’s starting to become clear just how significant they can be for businesses. First Solar, a company making thin-film solar panels in the US, revealed earlier this year that it was in the middle of a deal to receive about $700 million from tax credits

Then there are the provisions for individuals. As of late May, about three million households had claimed IRA tax credits for their homes in 2023. Together, they received about $8 billion for solar panels, batteries, heat pumps, and home efficiency technologies such as insulation. The credits are popular—that spending was roughly three times higher than projections had suggested. 

One area I’ve been following especially closely is funding from the Loan Programs Office of the US Department of Energy, which lends money to businesses to help them get their innovative projects built. There was a $2 billion commitment to Redwood Materials, a battery recycling company I dug into just before the announcement. You might also remember a $1.52 billion loan to reopen a nuclear power plant in Michigan and a $400 million loan to give zinc batteries a boost

It’s not just the federal government that’s pouring in money—businesses are following suit, announcing new factories or expanding old ones. Between the passage of the IRA in August 2022 and May 2024, companies have committed $110 billion for 159 projects from EVs and solar and wind to transmission projects, according to a tracker from Jack Conness, a policy analyst at Energy Innovation, an energy and climate policy firm. 

The effects have rippled out beyond the US. Europe finalized the Net-Zero Industry Act in early 2024, partly as an answer to the IRA. It’s not quite the same spending spree, but the bill does include a goal for Europe to supply 40% of its own climate tech by 2030 and it implements some rule changes regarding how new projects get approved to help that happen. 

The Inflation Reduction Act still has a lot of time left, and some programs have a 10-year window. One of the biggest, though often overlooked, changes over the last year is that we’ve gotten clarity on how some of the major programs are actually going to work. While the large contours were laid out in the law, some of the details about implementing them were left up to agencies to nail down. And while these specifics often seem small, they can affect which sorts of projects are eligible, changing how these credits might shape the industry. 

For example, in December 2023 we learned how restrictions in the EV tax credits will affect vehicles with components made in China. As a result, starting in 2024 some vehicle models became ineligible for the credits, including the Ford Mustang Mach-E. (The company hasn’t said exactly why the model lost eligibility, but some reporting has suggested it’s likely because the lithium iron phosphate batteries used in the vehicles come from the Chinese company CATL.) 

Some of those specifics get really complicated. The hydrogen tax credits could get tangled up in legal battles. The full rules on credits for sustainable aviation fuel raised concerns that fuels that don’t help much with emissions will still get funding. The credits for critical minerals apply only to processing, not to mining efforts, as my colleague James Temple detailed in his story about a Minnesota mine earlier this year

Looking ahead, the fate of the IRA’s programs may depend on the outcome of the presidential election in November. Vice President Kamala Harris, the Democratic nominee, cast the tie-breaking vote to pass the law, and she would likely keep the programs going. Meanwhile, Donald Trump, the Republican nominee, has been openly targeting many of its provisions, and he could do some damage to many of the tax credits included, even though it would require an act of Congress to actually repeal the law. (For more on what a second Trump presidency might mean for the climate law, check out this great deep dive from James Temple.) 

The action certainly isn’t slowing down in the world of climate technology. Looking ahead, one major piece of the puzzle we’ll be watching is a potential change to how new projects get approved. There’s a permitting reform package winding its way through the government now, so stay tuned for more on that, and on everything climate tech. 


Now read the rest of The Spark

Related reading

At our ClimateTech event last year, Leah Stokes, an environmental policy professor at UC Santa Barbara who was closely involved with developing the IRA, spoke with us about the law. For more on how it came to be and what changes we’ve seen so far, check out her segment here

Here’s what’s most at risk in the IRA as the US faces an election in November. 

One mine in Minnesota could unlock tens of billions of dollars in tax credits, as James Temple detailed in this story from January.

wide view of auto production at Mercedes-Benz factory
MERCEDES-BENZ AG

Another thing

Steel production is responsible for about 7% of global emissions. A growing array of technologies can produce the metal with less climate pollution, but there’s a big catch: They’re expensive. 

But in the grand scheme of things, even steel that costs 30% more than the standard stuff would only increase the cost of the average new car by about $100, or less than 1%. That gives the auto industry a unique opportunity to help drive the world toward greener steel. Get all the details in my latest story

Keeping up with climate  

The world’s biggest pumped hydropower project just came online in China. The $2.6 billion facility can store energy by pumping water uphill. (Bloomberg)

Scientists want to make a common chemical from wastewater. Researchers demonstrated a reactor that can produce ammonia from nitrates, a common pollutant found in municipal wastewater and agricultural runoff. (New Scientist)

→ Ammonia could be used as fuel for long-distance shipping. (MIT Technology Review)

The new movie Twisters shows a tornado ripping apart a wind turbine. Experts say we probably don’t need to worry too much about wind farms collapsing—those incidents tend to be rare, because turbines are built to withstand high wind speeds and are usually shut down and locked into a safe position in the case of extreme weather. (E&E News)

SunPower, once a dominant force in residential solar, is bankrupt. The company will sell off assets and gradually close up shop in the latest hit to a turbulent market. (Latitude Media)

More than 47,000 people in Europe died last year from heat-related causes. If it hadn’t been for adaptation measures like early warning systems and cooling technology, the toll could have been much higher. (New York Times)

Europe could be a bright spot for Beyond Meat and other companies selling plant-based products. The industry has seen sales and profits stagnate or drop recently, especially in the US, but Europe has lower levels of meat consumption, and supermarkets there have shown some support for animal-free alternatives. (Wired)

South Korea turns about 98% of its food waste into compost, animal feed, or energy. It’s one of the few countries with a comprehensive system for food waste, and it’s not an easy one to replicate. (Washington Post)

→ Here’s how companies want to use microbes to turn food scraps and agricultural waste into energy. (MIT Technology Review)

Just 12% of new low-emissions hydrogen projects have customers lined up. As a result, many proposed projects will probably never get built. (Bloomberg)

Amazon Vies for Nuclear-Powered Data Center



When Amazon Web Services paid US $650 million in March for another data center to add to its armada, the tech giant thought it was buying a steady supply of nuclear energy to power it, too. The Susquehanna Steam Electric Station outside of Berick, Pennsylvania, which generates 2.5 gigawatts of nuclear power, sits adjacent to the humming data center and had been directly powering it since the center opened in 2023.

After striking the deal, Amazon wanted to change the terms of its original agreement to buy 180 megawatts of additional power directly from the nuclear plant. Susquehanna agreed to sell it. But third parties weren’t happy about that, and their deal has become bogged down in a regulatory battle that will likely set a precedent for data centers, cryptocurrency mining operations, and other computing facilities with voracious appetites for clean electricity.

Putting a data center right next to a power plant so that it can draw electricity from it directly, rather than from the grid, is becoming more common as data centers seek out cheap, steady, carbon-free power. Proposals for co-locating data centers next to nuclear power have popped up in New Jersey, Texas, Ohio, and elsewhere. Sweden is considering using small modular reactors to power future data centers.

However, co-location raises questions about equity and energy security, because directly-connected data centers can avoid paying fees that would otherwise help maintain grids. They also hog hundreds of megawatts that could be going elsewhere.

“They’re effectively going behind the meter and taking that capacity off of the grid that would otherwise serve all customers,” says Tony Clark, a senior advisor at the law firm Wilkinson Barker Knauer and a former commissioner at the Federal Energy Regulatory Commission (FERC), who has testified to a U.S. House subcommittee on the subject.

Amazon’s nuclear power deal meets hurdles

The dust-up over the Amazon-Susquehanna agreement started in June, after Amazon subsidiary Amazon Web Services filed a notice to change its interconnection service agreement (ISA) in order to buy more nuclear power from Susquehanna’s parent company, Talen Energy. Amazon wanted to increase the amount of behind-the-meter power it buys from the plant from 300 MW to 480 MW. Shortly after it requested the change, utility giants Exelon and American Electric Power (AEP), filed a protest against the agreement and asked FERC to hold a hearing on the matter.

Their complaint: the deal between Amazon and the nuclear plant would hurt a third party, namely all the customers who buy power from AEP or Exelon utilities. The protest document argues that the arrangement would shift up to $140 million in extra costs onto the people of Pennsylvania, New Jersey, and other states served by PJM, a regional transmission organization that oversees the grid in those areas. “Multiplied by the many similar projects on the drawing board, it is apparent that this unsupported filing has huge financial consequences that should not be imposed on ratepayers without sufficient process to determine and evaluate what is really going on,” their complaint says.

Susquehanna dismissed the argument, effectively saying that its deal with Amazon is none of AEP and Exelon’s business. “It is an unlawful attempt to hijack this limited [ISA] amendment proceeding that they have no stake in and turn it into an ad hoc national referendum on the future of data center load,” Susquehanna’s statement said. (AEP, Exelon, Talen/Susquehanna, and Amazon all declined to comment for this story.)

More disputes like this will likely follow as more data centers co-locate with clean energy. Kevin Schneider, a power system expert at Pacific Northwest National Laboratory and research professor at Washington State University, says it’s only natural that data center operators want the constant, consistent nature of nuclear power. “If you look at the base load nature of nuclear, you basically run it up to a power level and leave it there. It can be well aligned with a server farm.”

Data center operators are also exploring energy options from solar and wind, but these energy sources would have a difficult time matching the constancy of nuclear, even with grid storage to help even out their supply. So giant tech firms look to nuclear to keep their servers running without burning fossil fuels, and use that to trumpet their carbon-free achievements, as Amazon did when it bought the data center in Pennsylvania. “Whether you’re talking about Google or Apple or Microsoft or any of those companies, they tend to have corporate sustainability goals. Being served by a nuclear unit looks great on their corporate carbon balance sheet,” Clark says.

Costs of data centers seeking nuclear energy

Yet such arrangements could have major consequences for other energy customers, Clark argues. For one, directing all the energy from a nuclear plant to a data center is, fundamentally, no different than retiring that plant and taking it offline. “It’s just a huge chunk of capacity leaving the system,” he says, resulting in higher prices and less energy supply for everyone else.

Another issue is the “behind-the-meter” aspect of these kinds of deals. A data center could just connect to the grid and draw from the same supply as everyone else, Clark says. But by connecting directly to the power plant, the center’s owner avoids paying the administrative fees that are used to maintain the grid and grow its infrastructure. Those costs could then get passed on to businesses and residents who have to buy power from the grid. “There’s just a whole list of charges that get assessed through the network service that if you don’t connect through the network, you don’t have to pay,” Clark says. “And those charges are the part of the bill that will go up” for everyone else.

Even the “carbon-free” public relations talking points that come with co-location may be suspect in some cases. In Washington State, where Schneider works, new data centers are being planted next to the region’s abundant hydropower stations, and they’re using so much of that energy that parts of the state are considering adding more fossil fuel capacity to make ends meet. This results in a “zero-emissions shell game,” Clark wrote in a white paper on the subject.

These early cases are likely only the beginning. A report posted in May from the Electric Power Research Institute predicts energy demand from data centers will double by 2030, a leap driven by the fact that AI queries need ten times more energy than traditional internet searches. The International Energy Agency puts the timeline for doubling sooner–in 2026. Data centers, AI, and the cryptocurrency sector consumed an estimated 460 terawatt-hours (TWh) in 2022, and could reach more than 1000 TWh in 2026, the agency predicts.

Data centers face energy supply challenges

New data centers can be built in a matter of months, but it takes years to build utility-scale power projects, says Poorvi Patel, manager of strategic insights at Electric Power Research Institute and contributor to the report. The potential for unsustainable growth in electricity needs has put grid operators on alert, and in some cases has sent them sounding the alarm. Eirgrid, a state-owned transmission operator in Ireland, last week warned of a “mass exodus” of data centers in Ireland if it can’t connect new sources of energy.

There’s only so much existing nuclear power to go around, and enormous logistical and regulatory roadblocks to building more. So data center operators and tech giants are looking for creative solutions. Some are considering small modular reactors (SMRs)–which are advanced nuclear reactors with much smaller operating capacities than conventional reactors. Nano Nuclear Energy, which is developing microreactors–a particularly small type of SMR–last month announced an agreement with Blockfusion to explore the possibility of powering a currently defunct cryptomining facility in Niagara Falls, New York.

“To me, it does seem like a space where, if big tech has a voracious electric power needs and they really want that 24/7, carbon-free power, nuclear does seem to be the answer,” Clark says. “They also have the balance sheets to be able to do some of the risk mitigation that might make it attractive to get an SMR up and running.”

How the auto industry could steer the world toward green steel

Steel scaffolds our world, undergirding buildings and machines. It also presents a major challenge for climate change, since steel production largely relies on polluting fossil fuels. The automotive industry could be a key player in turning things around.

Steel production is currently responsible for about 7% of global greenhouse gas emissions. There’s a growing array of technologies that can produce steel with dramatically lower emissions—though some are still in development, and they often come with a higher price tag. The auto industry could be a fertile early market for these technologies, both because it’s a major player in the industry and because switching to more expensive materials would only bump costs up for new vehicles by less than 1%, according to a new report

Finding economical ways to produce the materials we rely on while also cutting emissions is a major challenge for the industrial sector. Vehicle manufacturers embracing greener steel could provide a blueprint for how to bring more climate-friendly materials to the market without driving customers away.

Since automakers use a lot of steel, they have an opportunity to lead the charge to decarbonize the industry, says Peter Slowik, an analyst leading research on passenger vehicles in the US for the International Council on Clean Transportation.

About 12% of global steel production goes to the auto industry, and in some regions, the percentage is significantly higher—about 60% of all primary (non-recycled) steel produced in the US goes to vehicle manufacturing. That non-recycled steel comes with higher emissions than the recycled version, so making a swap to greener steel in the automotive industry, which mostly uses non-recycled material, would have an outsized impact. 

Making steel today generally requires steelmakers to heat raw materials to high temperatures, using fossil fuels like coal to drive the chemical reactions that transform iron ore into steel. But there’s a growing array of ways to make steel with lower emissions, including efforts to add carbon capture technology to new and existing plants and implement new technologies that rely on electricity instead of fossil fuels.

One leading contender for producing low-emissions steel is a process called direct reduction, where chemical reactions can be powered by hydrogen fuel instead of coal. If that hydrogen is produced with renewable or other low-carbon energy sources, it could allow steel production with up to 95% lower emissions.

Steel is responsible for a major chunk of the climate impacts of manufacturing a vehicle—so swapping in green steel could cut the emissions associated with building a car by 27%, according to the ICCT report.

And the materials wouldn’t dramatically inflate costs, either. “Generally, we’re finding that it wouldn’t add too much to the cost of the vehicle,” Slowik says.

H2 Green Steel is currently building what could become the world’s largest low-emissions steel factory, with a capacity of 2.5 million metric tons of steel by 2026. The company has said its product will cost 20% to 30% more than conventional steel. That would add roughly $100 to $200 more to a vehicle’s cost of materials, totaling less than 1% of the average vehicle.

In another recent report examining steel in vehicle manufacturing in Europe, experts put the additional cost at just €105, or about $115, for a vehicle made entirely with steel produced using a hydrogen-powered process in 2030. And even that slight cost bump could disappear in the future as production volumes increase and costs come down.

“The relatively high value of cars, especially of premium brands, also means they can absorb the short-term green premium of greener steel,”  Alex Keynes, cars policy manager at the European Federation for Transport and Environment, said in an email.

The same principle might hold for some other common products made with steel. One estimate from Hannah Ritchie, a data scientist and deputy editor at Our World In Data, put the added cost for using green steel in a house at less than 1% of its purchase price. 

There’s a complicated web of actors in construction though, from architects to builders to contractors, which could make purchasing more expensive materials that come with a climate benefit a more complex proposition. And bigger projects that require more steel could face much larger price increases that make green steel unaffordable in those contexts, at least for now. 

Automakers committing to purchasing green steel from steelmakers could help ensure they’re able to grow quickly, and some companies have already secured such commitments. As of January 2024, H2 Green Steel had binding agreements in place for more than 40% of its steel production in the initial years of its new plant.

However, there are still challenges facing the industry, including questions about the future cost and availability of green hydrogen, Keynes says. Policy measures, from subsidies to encourage the fuel’s production to regulations, could be crucial to getting greener steel into our vehicles and beyond.

Your AC habits aren’t unique. Here’s why that’s a problem.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

When I get home in the evening on a sweltering summer day, the first thing I do is beeline to my window air-conditioning units and crank them up.

People across the city, county, and even the state are probably doing the same thing. And like me, they might also be firing up the TV and an air fryer to start on dinner. This simple routine may not register in your mind as anything special, but it sure does register on the electrical grid.

These early evening hours in the summer are usually the time with the highest electricity demand. And a huge chunk of that power is going into cooling systems that keep us safe and comfortable. This is such a significant challenge for utilities and grid operators that some companies are trying to bring new cooling technologies to the market that can store up energy during other times to use during peak hours, as I covered in my latest story

Let’s dig into why that daily maximum is a crucial data point to consider as we plan to keep the lights (and AC) on while cleaning up our energy system. 

In some places where air-conditioning is common, like parts of the US, space cooling can represent more than 70% of peak residential electrical demand on hot days, according to data from the International Energy Agency. It’s no wonder that utilities sometimes send out notices begging customers to turn down their AC during heat waves. 

All that demand can add up—just look at data from the California Independent System Operator (CAISO), which oversees operation of electricity generation and transmission in the state. Take, for example, Monday, August 5. The minimum amount of power demand, at around four in the morning, was roughly 25,000 megawatts. The peak, at about six in the evening, was 42,000 megawatts. There’s a lot behind that huge difference between early morning and the evening peak, but a huge chunk of it comes down to air conditioners. 

These summer evenings often represent the highest loads the grid sees all year long, since cooling systems like my window air conditioners are such energy hogs. Winter days usually see less variation, and typically there are small peaks in both the morning and evening that can be attributed to heating systems. (See more about how this varies around the US in this piece from the Energy Information Agency.)

From a climate perspective, this early evening peak in the summer is inconveniently timed, since it hits right around when solar power is ramping down for the day. It’s an example of one of the perennial challenges of some renewable electricity sources: they might be available, but they’re not always available at the right times.

Grid operators often don’t have the luxury of choosing how they meet demand—they take what they can get, even if that means turning on fossil-fuel power plants to keep the lights on. So-called peaker plants are usually the ones tapped to meet the highest demand, and they’re typically more expensive and also less efficient than other power plants.  

Batteries are starting to come to the rescue, as I covered in this newsletter a few months ago. On April 16, CAISO data showed that energy storage systems were the single biggest power source on the grid starting just after 7 p.m. local time. But batteries are far from being able to solve peak demand—with higher summer grid loads, natural-gas plants are cranked up much higher in August than they were in April, so fossil fuels are powering summer evening routines in California.

We still need a whole lot more energy storage on the grid, and other sources of low-emissions electricity like geothermal, hydropower, and nuclear to help in these high-demand hours. But there’s also a growing interest in cooling systems that can act as their own batteries. 

A growing number of technologies do just this—the goal is to charge up the systems using electricity during times when demand is low, or when renewables are readily available. Then they can provide cooling during these peak-demand hours without adding stress to the grid. Check out my full story for more on how they work, and how far along they are. 

As the planet warms and more people install AC, we might be pushing the limits of what the grid can handle.  Even if generation capacity isn’t stretched thin, extreme heat and high loads can threaten transmission equipment. 

While asking people to bump up their thermostat can be a short-term fix on the hottest days, having technologies that allow us to be more flexible in how and when we use energy could be key to staying safe and comfortable even as the summer nights keep getting hotter. 


Now read the rest of The Spark

Related reading

Air-conditioning is something of an antihero for climate action, since it helps us adapt to a warming world but also contributes to that warming with sky-high energy demand, as I wrote about in a newsletter last year

Batteries could be key to meeting peak electricity demand—and they’re starting to make a dent, as I covered earlier this year

Another thing

A growing number of companies in China want to power fleets of bikes not with batteries, but with hydrogen. But reception has been mixed, with riders reporting trouble with range. Read more in the latest story from my colleague Zeyi Yang.

Part of the reason for the growing interest in hydrogen is concern over the safety of lithium-ion batteries. New York is trying to make e-bikes safer by deploying battery-swapping stations in the city. For all you need to know about the program, check out my May story on the topic.

Keeping up with climate  

A major renewable-energy company unveiled a first-of-its-kind robot to help install solar panels. The company claims Maximo can install panels twice as fast as humans, at half the cost. (New York Times)

The European Union got more electricity from solar and wind than fossil fuels in the first half of 2024. Reforms in permitting and Russia’s invasion of Ukraine are two factors pushing the rise of renewables. (Canary Media)

Stepping into the shade can make the temperature feel dozens of degrees cooler. Cities need to look beyond trees for shade. (The Atlantic)

Check out these interactive charts detailing how each US state gets its electricity, and how it’s changed in the last two decades. Some surprises for me included South Carolina and Iowa. (New York Times)

Electric-vehicle sales in Germany are continuing their slide, dropping by 37%. The ongoing slump comes after the country ended incentives last year that supported EVs. (Bloomberg)

Wildfire smoke can have negative health effects. Protect yourself by staying indoors on days when air quality is poor, wearing a mask, and—especially—avoiding outdoor exercise. (Wired)

→ I spoke about a new study that will follow survivors of last year’s Maui fire to track their health outcomes, along with other science news of the week, on the latest episode of Science Friday. (Science Friday)

A new bill snaking its way through the US Congress could make it easier to build renewable-energy projects—and some fossil-fuel projects too. Here’s why a growing cadre of energy experts is on board with these permitting reforms despite concessions for oil and gas. (Heatmap)

Kamala Harris tapped Tim Walz as her pick for vice president. The Minnesota governor brings some climate experience to the ticket, including a law that requires utilities to reach 100% renewable energy by 2040. (Grist)

What to know about China’s push for hydrogen-powered transportation

This story first appeared in China Report, MIT Technology Review’s newsletter about technology in China. Sign up to receive it in your inbox every Tuesday.

There’s a decent chance you’ve heard of hydrogen-powered vehicles but never seen one. Over 18,000 are in the US, almost exclusively in California. On the outside they look just like traditional vehicles, but they are powered by electricity generated from a hydrogen fuel cell, making them far cleaner and greener.  

So when I learned that in parts of China, companies are putting hydrogen-powered bikes on the road for anyone to ride, it was a real “the future is here” moment for me. I looked deeper into it and wrote a story

These bikes have water-bottle-sized hydrogen tanks, which can make them easier than regular bikes to ride, though the tanks have to be swapped out every 40 miles. But they haven’t exactly been getting rave reviews. One rider in Shanghai told me the speed boost from hydrogen felt lacking, and the user experience was hurt by hardware and software design flaws. Many people on social media agree with him. 

Youon, one of the largest players in China’s bike-sharing industry, has thrown its support behind hydrogen energy. It has put thousands of hydrogen-powered bikes in major cities like Beijing and Shanghai, in the hopes of kick-starting a trend. 

But for clean energy experts, it’s a head-scratcher as to why these hydrogen bikes are being promoted in the first place: Hydrogen bikes are less efficient than ordinary e-bikes, and they won’t make much economic sense in the long run.

It’s not just one company taking this path. The collective appetite for hydrogen bikes has been much bigger than I expected. By my own counting, Youon has half a dozen competitors in the hydrogen bike field, and several cities have embraced the idea. While the future of hydrogen-powered shared bikes is uncertain, their proliferation represents a much larger trend happening in China: exploring how hydrogen can be used in transportation. 

It’s no secret that China has already become a world leader in producing affordable and capable electric vehicles, but the Chinese government and companies aren’t stopping there. A significant number of local policies have been set up in recent years to subsidize the production of hydrogen vehicles, waive toll fees for them, and build more refuel stations for hydrogen. Now China has about 21,000 hydrogen vehicles on the road and more than 400 refuel stations.

It’s worth having a reality check about China’s push for hydrogen: While using hydrogen as a fuel for vehicles comes with no carbon emissions, that’s not the case for actually producing hydrogen. In China, the vast majority comes from fossil fuels, which cost much less than producing hydrogen with water and renewable energy. (To learn the difference between “gray,” “blue,” and “green” hydrogen, read this piece by my colleague Casey Crownhart.) 

The sad truth is that China will rely on coal and natural gas for making hydrogen for a while. The fact that hydrogen is a byproduct of processing coal explains why many cities in China with abundant coal resources are also at the frontier of the hydrogen industry. For them, the economic argument for hydrogen can trump the environmental costs, and as a result, even though hydrogen vehicles create a pathway for the transportation system to further decarbonize in the future, they are doing very little to address climate change now. 

The same issue applies to electric vehicles in China: Yes, electricity is cleaner than gas as a car fuel, but the majority of electricity in China still comes from fossil fuels, so how much cleaner is it really? 

But hydrogen vehicle companies need to answer an additional question: If China is already pretty good at making batteries for EVs, why should it bother spending any time or resources on hydrogen vehicles?

For now, the Chinese companies have come up with one good answer, and it’s not bikes. It’s heavy trucks. 

“Hydrogen passenger vehicles are kind of a dead end here … I think for fleet vehicles, trucking, long-distance cargo, hydrogen is competitive with long-range electric vehicles. Maybe it’s a toss-up?” says David Fishman, a senior manager at the Lantau Group, an energy consulting firm.

If you think about it, cargo trucks bump up against some of EVs’ biggest limitations today: They need to go ultra-long distances while being refueled quickly to save time. Meanwhile, the limitations of hydrogen vehicles, like the lack of refuel stations and the higher production costs, make them much more suitable for commercial fleets than for individual car buyers.

As a result, Chinese hydrogen trucking companies are feeling confident, says Fishman. If hydrogen really becomes a next-generation mainstream fuel, it will probably start with trucks in China.

Do you think hydrogen or lithium batteries are the future of clean transportation? Let me know your pick at zeyi@technologyreview.com.


Now read the rest of China Report

Catch up with China

1. In China, private companies are responsible for verifying peoples’ identities on social media. Now the government is trying to take back that control by introducing a new “national internet ID” system, a move that became instantly controversial. (New York Times $)

2. Record-high temperatures in southern China are pushing the grid to its limit. On August 2, the power demand of Shanghai was more than the entire capacity of the Philippines. (Bloomberg $)

3. Honor, a smartphone maker once owned by Huawei, is getting ready to go public. Documents show that the local government of Shenzhen has given it “unusually” large support, including a dedicated city hall team with a “no matter left overnight” policy. (Reuters $)

4. App developers in China can circumvent Apple’s high fees by charging users through Tencent’s and ByteDance’s super apps. Apple now wants to close that loophole. (Bloomberg $)

5. The Biden administration is planning to ban the use of Chinese software in US autonomous vehicles. (Reuters $)

6. The new R-rated Disney movie Deadpool & Wolverine had to take out references to cocaine and homosexuality and replace “vibrator” with “massage gun” to pass China’s censors. (Wall Street Journal $)

7. A university in Beijing has started offering the country’s first bachelor’s degree in “marriage services and management.” It will teach everything from matchmaking to divorce counseling. (CNBC)

Lost in translation

Cheap knockoff phones defined made-in-China gadgets in the 2000s, but they disappeared after domestic brands like Xiaomi brought their prices down significantly. Now, these knockoffs are making a comeback in livestream shopping channels, according to the Chinese publication IT Times. 

On Douyin and Kuaishou, cheap domestic 5G phones that look like Apple or Huawei products are trying to attract low-income consumers with promises of high-end specs and dirt-cheap prices as low as 298 yuan (a little over $40). Once consumers receive these phones, they usually realize that the claims about the specs are misleading, and the companies making the phones don’t even have proper business registrations. While stricter regulations in China and abundant domestic competition have pushed knockoff phones out of brick-and-mortar stores, they seem to thrive in the less-regulated online markets.

One more thing

Readers of China Report, hi! This is Zeyi. It’s been almost two years since I sent out the first edition of this newsletter, and sadly this will be my last, as I’m leaving MIT Technology Review

I’ve had a lot of fun writing this newsletter. I was able to wander off and talk about so many different things, from the weirdly terrifying customer service center of Tencent to my frustrations about the TikTok ban, from newsletter after newsletter talking about electric vehicles (not sorry about that) to the fun deep dives into social media and digital culture. And I’m very thankful to everyone who replied with insightful or heartfelt feedback.

Stay tuned, as MIT Technology Review will bring back China Report shortly. Meanwhile, I hope you will enjoy our other newsletters, or this incredibly petty response by Pizza Hut Hong Kong to the win over Italy for an Olympics fencing gold. And yes, I’m all for pineapples on pizza.

HK won a fencing gold over Italy & the Italian olympic committee submitted an official complaint claiming that the judges (from Taiwan & S Korea) were biased because of geographical closeness. In response, Pizza Hut HK is offering free pineapple on pizza until 6pm tomorrow lmaoo pic.twitter.com/DhEfYtL8je

— Hannah (@hannahchrstina) July 30, 2024

Your future air conditioner might act like a battery

As temperatures climb on hot days, many of us are quick to crank up our fans or air conditioners. These cooling systems can be a major stress on electrical grids, which has inspired some inventors to create versions that can store energy as well as use it. 

Cooling represents 20% of global electricity demand in buildings, a share that’s expected to rise as the planet warms and more of the world turns to cooling technology. During peak demand hours, air conditioners can account for over half the total demand on the grid in some parts of the world today.

New cooling technologies that incorporate energy storage could help by charging themselves when renewable electricity is available and demand is low, and still providing cooling services when the grid is stressed.  

“We say, take the problem, and turn it into a solution,” says Yaron Ben Nun, founder and chief technology officer of Nostromo Energy.

One of Nostromo Energy’s systems, which it calls an IceBrick, is basically a massive ice cube tray. It cools down a solution made of water and glycol that’s used to freeze individual capsules filled with water. One IceBrick can be made up of thousands of these containers, which each hold about a half-gallon, or roughly two liters, of water.

Insulation keeps the capsules frozen until it’s time to use them to help cool down a building. Then the ice is used to drop the temperature of the water-glycol mixture, which in turn cools down the water that circulates in the building’s chilling system. The whole thing is designed to work as an add-on with existing equipment, Ben Nun says. 

Nostromo installed its first system in the US in 2023, at the Beverly Hilton hotel in Los Angeles. It has a capacity of 1.4 megawatt-hours, and it also serves the neighboring Waldorf Astoria. The installation contains 40,000 capsules, amounting to about 150,000 pounds of ice. It usually charges up for 10 to 12 hours, starting at night and finishing around midday. That leaves it ready to discharge its cooling power between the late afternoon and evening, when demand on the grid is high and solar power is dropping off as the sun sets.

Using the IceBrick increases the total electricity needed for cooling, as some energy is lost to inefficiency during the cycle. But the goal is to decrease the energy demand during peak hours, which can cut costs for building owners, Ben Nun says. The company is in the process of securing roughly $300 million in funding, in part from the US Department of Energy’s Loan Programs Office, to fully finance 200 of these systems in California, he adds. 

closeup of the Ice brick system from Nostromo showing pipes with red connectors leading to metal cube shapes
Nostromo’s IceBrick is made of individual capsules that freeze and thaw to store energy.
NOSTROMO

While building owners can benefit immediately from these individual energy storage solutions, the real potential to help the grid comes when systems are linked together, Ben Nun says. 

When the grid is extremely stressed, utility companies are sometimes forced to shut off electricity supply to some areas, leaving people there without power when they need it most. Technologies that can adjust to meet the grid’s needs could help reduce reliance on these rolling blackouts. 

This kind of approach isn’t new—many commercial units have large tanks that hold chilled water or another cooling fluid that can drop the temperature in a building at a moment’s notice. But Nostromo’s technology can store more energy with much less material, because it uses the freezing and melting process rather than just cooling down a liquid, Ben Nun says. 

Startup Blue Frontier has differentiated itself in this space by building cooling systems that use desiccants. These materials can suck up moisture—like the little packets of silica beads that often come with new shoes and bags. But instead of those beads, the company is using a concentrated salt solution.

Blue Frontier’s cooling units pass a stream of air over a thin layer of the desiccant, which pulls moisture out of the air. That dry air is then used in an evaporative cooling process (similar to the way sweat cools your skin).

Desiccant cooling systems can be more efficient than the traditional vapor compression air conditioners on the market today, says Daniel Betts, founder and CEO of Blue Frontier. But the system also benefits from the ability to charge up during certain times and deliver cooling at other times.

The key to the energy storage aspect of desiccant cooling is the recharging: Like sponges, desiccants can only soak up a limited amount of water before they need to be wrung out. Blue Frontier does this by causing some water in the salt solution to evaporate, typically with a heat pump, to make it more concentrated. The recharging system can run constantly, or in bursts that can be timed to match periods when electricity is cheap or when more renewable power is available.

The benefit of these energy storage technologies is that they don’t require people turn their cooling systems down or off to help relieve stress on the grid, Betts says. 

Blue Frontier is testing several systems with customers today and hopes to manufacture larger quantities soon. And while commercial buildings are getting the first installations, Betts says he’s interested in bringing the technology to homes and other buildings too.

One challenge facing the companies working on these incoming technologies is finding a way to store large amounts of energy effectively without adding too much cost, says Ankit Kalanki, a principal in the carbon-free buildings program at the Rocky Mountain Institute, a nonprofit energy think tank. Cooling technologies like air conditioners are already expensive, so future solutions will have to be priced competitively to make it in the market. But given the world’s growing cooling demand, there’s still a significant opportunity for new technologies to help meet those needs, he adds.

Just rethinking air conditioning won’t be enough to meet the massive increase in energy demand for cooling, which could triple between now and 2050. To both do that and cut emissions, we’ll still need significantly more renewable energy capacity as well as gigantic battery installations on the grid. But adding flexibility into air-conditioning systems could help cut the investment needed to get to a zero-carbon grid.

Cooling systems can help us cope with our warming climate, Ben Nun says, but there’s a problem with the current options: “You’ll cool yourself, but you keep on warming the globe.”

Hydrogen bikes are struggling to gain traction in China

If you are in China and looking to ride a shared bike in the city, you might find something on the bike that looks a little different: a water-bottle-size hydrogen tank.

At least a dozen cities in China now have some kind of hydrogen-powered shared bikes for their residents. They offer an easier ride than traditional bikes and a safer energy source than lithium batteries. One Chinese company is betting that this will be the next big thing in public transportation, while others are riding on a national trend toward government policies that encourage the development of the hydrogen industry.

Yet the reception has been mixed. Riders have reported unsatisfactory experiences with current hydrogen bikes, and energy experts doubt whether it makes economic sense to replace e-bikes with hydrogen-powered ones. Even though hydrogen could be a great power source for long-distance transportation in the future, it may not be suitable for urban biking, a completely different task.

While there are companies in other countries that are working on hydrogen-powered bikes—and one French company already has a mature product—China stands out for putting these bikes to use as public transportation. Bike-sharing became hugely popular in the country during the 2010s tech boom. With support from deep-pocketed companies like Alibaba and Meituan, standardized, internet-connected shared bikes have filled urban streets since, sometimes resulting in incredible waste

Youon, a Chinese company with over 1 million bikes on the streets of over 300 cities, is one of the main players in the bike-sharing industry. Facing fierce domestic competition, the company has chosen to differentiate its brand by investing in hydrogen bikes since 2018, with four models now available to buy or rent.

A hydrogen bike is not very different in concept from an e-bike. The difference is in whether the energy is stored in a lithium-ion battery or a hydrogen tank.

Each of Youon’s hydrogen bikes stores 20 grams of hydrogen in the form of metal powders, which can absorb and release the gas in a tank at low pressures (less than 10 bar). When the rider starts pedaling, the hydrogen is fed to a fuel cell under the seat, where a chemical reaction takes place to produce electricity. At its peak, a hydrogen bike can go as fast as 23 kilometers (14 miles) per hour. One tank of hydrogen lasts 40 to 60 kilometers (25 to 37 miles), and replacing the tank takes a few seconds.

Why hydrogen?

E-bikes have existed in China for a long time. According to the official figures, there are around 350 million in China today, and they are commonly used by everyday commuters and professional delivery workers. 

However, many of China’s largest cities have shied away from commissioning e-bikes as part of the public transportation network or even banned them, because lithium batteries pose a fire risk. In 2023, Chinese fire departments received a total of 21,000 reports of e-bikes catching fire, a 17.4% increase from the previous year. 

That created a supply vacuum for Youon. It’s positioned itself as a safer alternative thanks to its use of hydrogen. The hydrogen is stored in a low-pressure state, and if there’s any leak, it will dissipate quickly without causing an explosion, the company says on its website.

It’s a strategy that’s worked: These bikes have been more readily accepted by local governments. In 2022, Youon sold 2,000 of its hydrogen bikes to Lingang, a new high-tech district in Shanghai; in 2023, the company sold 500 hydrogen bikes to the Daxing district of Beijing. Today, its hydrogen bikes can be found in over six Chinese cities. 

Youon has since doubled down on its investment in hydrogen. The company has launched a product that lets users generate hydrogen at home with solar power and water. It also worked with the local government of Jiangsu, where its headquarters are, to publish a set of industry standards covering safety requirements, hydrogen tanks, and more. “Hydrogen energy is also an essential pathway to achieving carbon neutrality,” said Sun Jisheng, the CEO of Youon, at an industry conference in June.

The problem

However, that’s about where the advantage of hydrogen bikes ends.

David Fishman, a China-based senior manager of the Lantau Group, an energy consultancy, says he struggles to see the advantage. “Maybe the safety angle is a relevant factor for someone who doesn’t like carrying around lithium-ion batteries and storing them in their house,” he says. Other than that, hydrogen bikes are less energy-efficient than battery-powered bikes, and it costs more to produce hydrogen in the first place.

The main advantage of hydrogen as an energy source is that it has much higher energy density, meaning a hydrogen tank with the same weight as a lithium battery would produce more energy and power the vehicles to go farther. However, that advantage only kicks in for trips over 800 kilometers, says Mark Z. Jacobson, a professor of civil and environmental engineering at Stanford University.

That means hydrogen is a more economical choice for long-distance transportation like ships, planes, and trucks. Bikes, however, are almost on the exact opposite end of the transportation spectrum. Few people would bike for long distances, let alone those who are only renting a public bike for a short time. For anything shorter than 800 km, battery-powered vehicles are more energy efficient, says Jacobson. He estimates that a battery-powered bike consumes only 40% of the energy of a hydrogen-powered equivalent and also takes up less space.

On top of that, the company’s hydrogen bikes have failed to impress many of the early adopters. 

a row of blue Yuoun hydrogen bikes for rent in the city
VIA YOUONBIKESHARE.COM

Gu, a resident of Lingang who only wishes to use his last name for this story, tells MIT Technology Review that he tried the bikes several times and they never felt effort-saving to him. Instead, the bike, along with the hydrogen tank and fuel-cell-powered motors, felt heavy and hard to maneuver. As a user, he has no idea whether the bike was running as expected or if the difficulty he encountered was due to its running out of hydrogen, although the company is supposed to block any bike with low hydrogen reserves from being unlocked.

Another common complaint is the inconvenience of finding and returning the bikes because there are only a limited number in the city and they have to be returned to specific locations for easy retrieval or tank replenishment. 

“The bike has to be returned to a designated spot. But even if I put the bike at that very location, there’s GPS drifting, and I’d be charged a very high fee for them to move the bike,” Gu says.

On social media, hydrogen-bike users have complained a lot about similar experiences. Youon has found itself caught up in headlines at least a couple of times recently, with stories where users question whether their bikes are really useful for their daily commutes. 

Youon didn’t respond to questions sent by MIT Technology Review.

The future of hydrogen bikes

Despite all these issues, there are at least half a dozen more companies in China working to launch hydrogen-powered shared bikes. These are often startups operating small-scale pilot projects in cities that have sizable hydrogen industries, like Foshan or Xiaoyi. 

Many of these cities have even bigger plans—they are vying to become the hub of the hydrogen economy in China, which is increasingly betting on it as the future of clean energy. 

This year, for the first time, hydrogen energy was mentioned in an annual official report from Beijing, which summarizes government work. The Chinese government said it vows to “accelerate the development of hydrogen energy … after enforcing the lead in smart, connected new energy vehicles.” The mention injected a boost of confidence into the hydrogen industry in China, which already produces more hydrogen every year than any other country.

Not all of this is good news for the environment. About 80% of hydrogen produced in China actually comes from burning coal or natural gas, and some of the fiercest government support for hydrogen comes from coal-mining cities looking to transition. While the country is moving in the direction of green hydrogen (hydrogen generated with renewable energy and water), the fuel will remain polluting for a long time.

When a technology is still in the early stages, finding the best use case for it is key. There are plenty of companies in China working on developing hydrogen-powered trucks and other long-distance forms of transportation, but considering the size of the bike-sharing market in the country, it’s no surprise that turning their attention to bikes seems like a profitable idea to some. 

However, if there’s no way to dramatically improve the performance or economics of hydrogen bikes, it’s hard to imagine the current batch of experiments lasting for long. As companies move from piloting their new products to seeking adoption and profits, they will have some serious questions to answer.

Why investors care about climate tech’s green premium

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Talking about money can be difficult, but it’s a crucial piece of the puzzle when it comes to climate tech. 

I’ve been thinking more about the financial piece of climate innovation since my colleague James Temple sat down for a chat with Mike Schroepfer, former CTO of Meta and a current climate tech investor. They talked about Schroepfer’s philanthropic work as well as his climate-tech venture firm, Gigascale Capital. (I’d highly recommend reading the full Q&A here.) 

In their conversation, Schroepfer spoke about investing in companies not solely because of their climate promises, but because they can deliver a cheaper, better product that happens to have benefits for climate action too. 

This all got me thinking about what we can expect from new technologies financially. What do they need to do to compete, and how quickly can they do so? 

Look through the portfolio of a climate-focused venture capital firm or walk around a climate-tech conference, and you’ll be struck by the creativity and straight-up brilliance of some of the proposed technologies.

But in order to survive, they need a lot more than a good idea, as my colleague David Rotman pointed out in a story from December outlining six takeaways from this century’s first boom in climate tech. Countless companies rose to stardom with shiny new ideas starting around 2006 before crashing and failing by 2013.

As David put it, there are lessons in that rise and fall for today’s boom in climate technology: “The brilliance of many new climate technologies is evident, and we desperately need them. But none of that will ensure success. Venture-backed startups will need to survive on the basis of economics and financial advantages, not good intentions.”

Often, companies looking to help address climate change with new products are competing with an established industry. These newcomers must contend with what Bill Gates has called the “green premium.”

The green premium is the cost difference between a cheaper product that increases pollution and a more expensive alternative that offers climate benefits. In order to get people on board with new technologies, we need to close that gap. 

As Gates has outlined in his writings on this topic, there are basically two ways to do this: We need to find ways to either increase the cost of polluting products or cut the cost of the version that causes little to no climate pollution.

Some policies aim to go after the first of these options—the European Union has put a price on carbon, raising the cost of fossil-fuel-based products, for example. But relying on policy can leave companies at the whims of political winds in markets like the US. 

So that leaves the other option: New technology needs to get cheaper. 

As Schroepfer explained in his chat with James, one of the focuses at his venture firm, Gigascale Capital, is picking companies that can compete on economics or offer other benefits to customers. As he put it, a company should basically be saying: “Hey, this is a better product. [whispers] By the way, it’s better for the environment.”

It’s unrealistic to expect companies to have better, cheaper products right out of the gate, Schroepfer acknowledges. But he says that the team is looking for companies that can—over the course of a relatively short, roughly five-to-10-year period—grow to compete on cost, or even gain a cost advantage over the alternatives.

Schroepfer points to batteries and solar power as examples of technologies that are competitive today. When it’s available, electricity produced with solar panels is the cheapest on the planet. Batteries are 90% less expensive than they were just 15 years ago.

But these cases reveal the tricky thing about the green premium: Many new technologies can eventually make up the gap, but it can take much longer than businesses and investors are willing to wait. Solar panels and lithium-ion batteries were available commercially in the 1990s, but it’s taken until now to get to the point where they’re cheap and widespread.

Some technologies just getting started today could be the batteries and solar power of the 2040s, if we’re willing to invest the time and money to get them there. And I already see a few instances where people are willing to pay more for climate-friendly products today, in part because of hopes for their future.  

One example that comes to mind is low-emissions steel. H2 Green Steel, a Swedish company working to make steel without fossil fuels, says it has customers who have agreed to pay 20% to 30% more for its products than metal made with fossil fuels. But that’s just the price today: Some reports predict that these technologies will be able to compete on cost by 2040 or 2050

Most new technologies designed to address climate change will need to make a case for themselves in the market. The question for the rest of us: How much support and time are we willing to put in to give them the best shot of getting there?


Now read the rest of The Spark

Related reading

For more on what the former Meta CTO has been up to in climate, read the full Q&A here. There’s a whole lot more to unpack, including work on glacier stabilization, ocean-based carbon removal, and even solar geoengineering. 

For more on the lessons that companies can take away from the first cleantech boom, give this story from my colleague David Rotman a read.

Another thing

The US Department of Energy is putting $33 million into nine concentrating solar projects, as my colleague James Temple reported exclusively last week. 

Concentrating solar power uses mirrors to direct sunlight, which heats up some target material. It’s not a new technology, and the DOE has been funding efforts to get it going since the 1970s. But it could be useful in industries from food and beverages to low-carbon fuels. Read the full story here

Keeping up with climate  

Western battery startups could be in big trouble. While new chemistries and alternative architectures attracted a lot of investor attention a few years ago, the companies are now facing the reality of competing with massive existing manufacturers. (The Information)

California’s largest wildfire of the year has burned well over 300,000 acres so far. Climate change has helped create the conditions that supercharge blazes. (Inside Climate News)

The UAE has been trying to juice up rainfall with high-tech cloud seeding operations. But the whole thing may be more about the show than the science—check out this great deep dive for more. (Wired)

Congestion pricing plans—like the one recently proposed and then abandoned in New York City—can be unpopular with voters. Yet people generally come around once they start to see the benefits. Here’s an in-depth look at how attitudes toward these plans change over time. (Grist)

Air New Zealand backed down from a goal to cut its emissions nearly 30% by the end of the decade. The first major airline to walk back such a promise, the company points to a lack of supply for alternative fuels, as well as delays in new aircraft deliveries. (BBC)

Global methane emissions are climbing at the quickest pace in decades. The powerful greenhouse gas is responsible for over half the warming we’ve experienced so far. (The Guardian

Demand for air conditioning is swelling in Africa. But the industry isn’t well regulated, and some residents are struggling to get reliable systems and keep harmful refrigerant gases from leaking. (Associated Press)

Southeast Asia is home to a fleet of relatively new coal power plants. Pulling these facilities off the grid early could be a major step to cutting emissions from global electricity production. (Cipher News)

Correction: an earlier version of this story misstated the name of Mike Schroepfer’s firm. It is Gigascale Capital.

❌