Normal view

There are new articles available, click to refresh the page.
Today — 19 September 2024Main stream

Droughts likely to be even longer in the future due to climate change

19 September 2024 at 15:56
Droughts likely to be even longer in the future due to climate change

(credit: USGS)

Droughts in the coming decades could be longer than projected by current climate models, a new study published Wednesday in Nature warns.

The international team of scientists examined potential biases that could skew climate models used to make drought projections under Intergovernmental Panel on Climate Change midrange and high emissions scenarios. The researchers corrected for the bias by calibrating those models with observations of the longest annual dry spells between 1998 and 2018.

By the end of this century, they found that the average longest periods of drought could be 10 days longer than previously projected. Trouble spots included North America, Southern Africa, and Madagascar, where the newly calibrated models showed that the increase in the longest annual dry spell could be about twice what the older models predicted.

Read 23 remaining paragraphs | Comments

Before yesterdayMain stream

Bizarre, nine-day seismic signal caused by epic landslide in Greenland

14 September 2024 at 13:28
Ice calving from a glacier

Enlarge (credit: Jason Edwards via Getty)

Earthquake scientists detected an unusual signal on monitoring stations used to detect seismic activity during September 2023. We saw it on sensors everywhere, from the Arctic to Antarctica.

We were baffled—the signal was unlike any previously recorded. Instead of the frequency-rich rumble typical of earthquakes, this was a monotonous hum, containing only a single vibration frequency. Even more puzzling was that the signal kept going for nine days.

Initially classified as a “USO”—an unidentified seismic object—the source of the signal was eventually traced back to a massive landslide in Greenland’s remote Dickson Fjord. A staggering volume of rock and ice, enough to fill 10,000 Olympic-sized swimming pools, plunged into the fjord, triggering a 200-meter-high mega-tsunami and a phenomenon known as a seiche: a wave in the icy fjord that continued to slosh back and forth, some 10,000 times over nine days.

Read 14 remaining paragraphs | Comments

Proposed underwater data center surprises regulators who hadn’t heard about it

By: WIRED
11 September 2024 at 15:54
Proposed underwater data center surprises regulators who hadn’t heard about it

(credit: BalticServers.com)

Data centers powering the generative AI boom are gulping water and exhausting electricity at what some researchers view as an unsustainable pace. Two entrepreneurs who met in high school a few years ago want to overcome that crunch with a fresh experiment: sinking the cloud into the sea.

Sam Mendel and Eric Kim launched their company, NetworkOcean, out of startup accelerator Y Combinator on August 15 by announcing plans to dunk a small capsule filled with GPU servers into San Francisco Bay within a month. “There's this vital opportunity to build more efficient computer infrastructure that we're gonna rely on for decades to come,” Mendel says.

The founders contend that moving data centers off land would slow ocean temperature rise by drawing less power and letting seawater cool the capsule’s shell, supplementing its internal cooling system. NetworkOcean’s founders have said a location in the bay would deliver fast processing speeds for the region’s buzzing AI economy.  

Read 27 remaining paragraphs | Comments

Greener Steel Production Requires More Electrochemical Engineers



In the 1800s, aluminum was considered more valuable than gold or silver because it was so expensive to produce the metal in any quantity. Thanks to the Hall-Héroult smelting process, which pioneered the electrochemical reduction of aluminum oxide in 1886, electrochemistry advancements made aluminum more available and affordable, rapidly transforming it into a core material used in the manufacturing of aircraft, power lines, food-storage containers and more.

As society mobilizes against the pressing climate crisis we face today, we find ourselves seeking transformative solutions to tackle environmental challenges. Much as electrochemistry modernized aluminum production, science holds the key to revolutionizing steel and iron manufacturing.

Electrochemistry can help save the planet

As the world embraces clean energy solutions such as wind turbines, electric vehicles, and solar panels to address the climate crisis, changing how we approach manufacturing becomes critical. Traditional steel production—which requires a significant amount of energy to burn fossil fuels at temperatures exceeding 1,600 °C to convert ore into iron—currently accounts for about 10 percent of the planet’s annual CO2 emissions. Continuing with conventional methods risks undermining progress toward environmental goals.

Scientists already are applying electrochemistry—which provides direct electrical control of oxidation-reduction reactions—to convert ore into iron. The conversion is an essential step in steel production and the most emissions-spewing part. Electrochemical engineers can drive the shift toward a cleaner steel and iron industry by rethinking and reprioritizing optimizations.

When I first studied engineering thermodynamics in 1998, electricity—which was five times the price per joule of heat—was considered a premium form of energy to be used only when absolutely required.

Since then the price of electricity has steadily decreased. But emissions are now known to be much more harmful and costly.

Engineers today need to adjust currently accepted practices to develop new solutions that prioritize mass efficiency over energy efficiency.

In addition to electrochemical engineers working toward a cleaner steel and iron industry, advancements in technology and cheaper renewables have put us in an “electrochemical moment” that promises change across multiple sectors.

The plummeting cost of photovoltaic panels and wind turbines, for example, has led to more affordable renewable electricity. Advances in electrical distribution systems that were designed for electric vehicles can be repurposed for modular electrochemical reactors.

Electrochemistry holds the potential to support the development of clean, green infrastructure beyond batteries, electrolyzers, and fuel cells. Electrochemical processes and methods can be scaled to produce metals, ceramics, composites, and even polymers at scales previously reserved for thermochemical processes. With enough effort and thought, electrochemical production can lead to billions of tons of metal, concrete, and plastic. And because electrochemistry directly accesses the electron transfer fundamental to chemistry, the same materials can be recycled using renewable energy.

As renewables are expected to account for more than 90 percent of global electricity expansion during the next five years, scientists and engineers focused on electrochemistry must figure out how best to utilize low-cost wind and solar energy.

The core components of electrochemical systems, including complex oxides, corrosion-resistant metals, and high-power precision power converters, are now an exciting set of tools for the next evolution of electrochemical engineering.

The scientists who came before have created a stable set of building blocks; the next generation of electrochemical engineers needs to use them to create elegant, reliable reactors and other systems to produce the processes of the future.

Three decades ago, electrochemical engineering courses were, for the most part, electives and graduate-level. Now almost every institutional top-ranked R&D center has full tracks of electrochemical engineering. Students interested in the field should take both electroanalytical chemistry and electrochemical methods classes and electrochemical energy storage and materials processing coursework.

Although scaled electrochemical production is possible, it is not inevitable. It will require the combined efforts of the next generation of engineers to reach its potential scale.

Just as scientists found a way to unlock the potential of the abundant, once-unattainable aluminum, engineers now have the opportunity to shape a cleaner, more sustainable future. Electrochemistry has the power to flip the switch to clean energy, paving the way for a world in which environmental harmony and industrial progress go hand in hand.

How did volcanism trigger climate change before the eruptions started?

8 September 2024 at 13:00
Image of a person in a stream-filled gap between two tall rock faces.

Enlarge / Loads of lava: Kasbohm with a few solidified lava flows of the Columbia River Basalts. (credit: Joshua Murray)

As our climate warms beyond its historical range, scientists increasingly need to study climates deeper in the planet’s past to get information about our future. One object of study is a warming event known as the Miocene Climate Optimum (MCO) from about 17 to 15 million years ago. It coincided with floods of basalt lava that covered a large area of the Northwestern US, creating what are called the “Columbia River Basalts.” This timing suggests that volcanic CO2 was the cause of the warming.

Those eruptions were the most recent example of a “Large Igneous Province,” a phenomenon that has repeatedly triggered climate upheavals and mass extinctions throughout Earth’s past. The Miocene version was relatively benign; it saw CO2 levels and global temperatures rise, causing ecosystem changes and significant melting of Antarctic ice, but didn’t trigger a mass extinction.

A paper just published in Geology, led by Jennifer Kasbohm of the Carnegie Science’s Earth and Planets Laboratory, upends the idea that the eruptions triggered the warming while still blaming them for the peak climate warmth.

Read 32 remaining paragraphs | Comments

Americans misunderstand their contribution to deteriorating environment

7 September 2024 at 13:16
Power lines are cast in silhouette as the Creek Fire creeps up on on the Shaver Springs community off of Tollhouse Road on Tuesday, Sept. 8, 2020, in Auberry, California.

Enlarge / Power lines are cast in silhouette as the Creek Fire creeps up on on the Shaver Springs community off of Tollhouse Road on Tuesday, Sept. 8, 2020, in Auberry, California. (credit: Kent Nishimura / Los Angeles Times)

This article originally appeared on Inside Climate News, a nonprofit, independent news organization that covers climate, energy and the environment. It is republished with permission. Sign up for their newsletter here

Most people are “very” or “extremely” concerned about the state of the natural world, a new global public opinion survey shows.

Roughly 70 percent of 22,000 people polled online earlier this year agreed that human activities were pushing the Earth past “tipping points,” thresholds beyond which nature cannot recover, like loss of the Amazon rainforest or collapse of the Atlantic Ocean’s currents. The same number of respondents said the world needs to reduce carbon emissions within the next decade.

Read 25 remaining paragraphs | Comments

Seaport Electrification Could Slash Emissions Worldwide



According to the International Maritime Organization, shipping was responsible for over 1 billion tonnes of carbon dioxide emissions in 2018. A significant share of those emissions came from seaport activities, including ship berthing, cargo handling, and transportation within port areas. In response, governments, NGOs, and environmental watchdog groups are sounding alarms and advocating for urgent measures to mitigate pollution at the world’s ports.

One of the most promising solutions for the decarbonization of port operations involves electrifying these facilities. This plan envisions ships plugging into dockside electric power rather than running their diesel-powered auxiliary generators for lighting, cargo handling, heating and cooling, accommodation, and onboard electronics. It would also call for replacing diesel-powered cranes, forklifts, and trucks that move massive shipping containers from ship to shore with battery-powered alternatives.

To delve deeper into this transformative approach, IEEE Spectrum recently spoke with John Prousalidis, a leading advocate for seaport electrification. Prousalidis, a professor of marine electrical engineering at the National Technical University of Athens, has played a pivotal role in developing standards for seaport electrification through his involvement with the IEEE, the International Electrical Commission (IEC), and the International Organization for Standardization (ISO). As vice-chair of the IEEE Marine Power Systems Coordinating Committee, he has been instrumental in advancing these ideas. Last year, Prousalidis co-authored a key paper titled “Holistic Energy Transformation of Ports: The Proteus Planin IEEE Electrification Magazine. In the paper, Prousalidis and his co-authors outlined their comprehensive vision for the future of port operations. The main points of the Proteus plan have been integrated in the policy document on Smart and Sustainable Ports coordinated by Prousalidis within the European Public Policy Committee Working Group on Energy; the policy document was approved in July 2024 by the IEEE Global Policy Committee.

portrait of a man with glasses and a suit and tie looking at camera with a blue box and red circle behind his left side head in the background Professor John ProusalidisJohn Prousalidis

What exactly is “cold ironing?”

John Prousalidis: Cold ironing involves shutting down a ship’s propulsion and auxiliary engines while at port, and instead, using electricity from shore to power onboard systems like air conditioning, cargo handling equipment, kitchens, and lighting. This reduces emissions because electricity from the grid, especially from renewable sources, is more environmentally friendly than burning diesel fuel on site. The technical challenges include matching the ship’s voltage and frequency with that of the local grid, which, in general, varies globally, while tackling grounding issues to protect against short circuits.

IEEE, along with IEC and ISO, have developed a joint standard, 80005, which is a series of three different standards for high-voltage and low-voltage connection. It is perhaps (along with Wi-Fi, the standard for wireless communication) the “hottest” standard because all governmental bodies tend to make laws stipulating that this is the standard that all ports need to follow to supply power to ships.

How broad has adoption of this standard been?

Prousalidis: The European Union has mandated full compliance by January 1, 2030. In the United States, California led the way with similar measures in 2010. This aggressive remediation via electrification is now being adopted globally, with support from the International Maritime Organization.

Let’s talk about another interesting idea that’s part of the plan: regenerative braking on cranes. How does that work?

Prousalidis: When lowering shipping containers, cranes in regenerative braking mode convert the kinetic energy into electric charge instead of wasting it as heat. Just like when an electric vehicle is coming to a stop, the energy can be fed back into the crane’s battery, potentially saving up to 50 percent in energy costs—though a conservative estimate would be around 20 percent.

What are the estimated upfront costs for implementing cold ironing at, say, the Port of Los Angeles, which is the largest port in the United States?

Prousalidis: The cost for a turnkey solution is approximately US $1.7 million per megawatt, covering grid upgrades, infrastructure, and equipment. A rough estimate using some established rules of thumb would be about $300 million. The electrification process at that port has already begun. There are, as far as I know, about 60 or more electrical connection points for ships at berths there.

How significant would the carbon reduction from present levels be if there were complete electrification with renewable energy at the world’s 10 biggest and busiest ports?


Prousalidis: If ports fully electrify using renewable energy, the European Union’s policy could achieve a 100-percent reduction in ship emissions in the port areas. According to the IMO’s approach, which considers the energy mix of each country, it could lead to a 60-percent reduction. This significant emission reduction means lower emissions of CO2, nitrogen oxides, sulfur oxides, and particulate matter, thus reducing shipping’s contribution to global warming and lowering health risks in nearby population centers.

If all goes according to plan, and every country with port operations goes full bore toward electrification, how long do you think it will realistically take to completely decarbonize that aspect of shipping?

Prousalidis: As I said, the European Union is targeting full port electrification by 1 January 2030. However, with around 600 to 700 ports in Europe alone, and the need for grid upgrades, delays are possible. Despite this, we should focus on meeting the 2030 deadline rather than anticipating extensions. This recalls the words of Gemini and Apollo pioneer astronaut, Alan Shepard, when he explained the difference between a test pilot and a normal professional pilot: “Suppose each of them had 10 seconds before crashing. The conventional pilot would think, In 10 seconds I’m going to die. The test pilot would say to himself, I’ve got 10 seconds to save myself and save the craft.” The point is that, in a critical situation like the fight against global warming, we should focus on the time we have to solve the problem, not on what happens after time runs out. But humanity doesn’t have an eject button to press if we don’t make every effort to avoid the detrimental consequences that will come with failure of the “save the planet” projects.

Taiwan Reboots Its Solar-Power Fishponds



A maze of brackish and freshwater ponds covers Taiwan’s coastal plain, supporting aquaculture operations that produce roughly NT $30 billion (US $920 million) worth of seafood every year. Taiwan’s government is hoping that the more than 400 square kilometers of fishponds can simultaneously produce a second harvest: solar power.

What is aquavoltaics?

That’s the impetus behind the new 42.9-megawatt aquavoltaics facility in the southern city of Tainan. To build it, Taipei-based Hongde Renewable Energy bought 57.6 hectares of abandoned land in Tainan’s fishpond-rich Qigu district, created earthen berms to delineate the two dozen ponds, and installed solar panels along the berms and over six reservoir ponds.

Tony Chang, general manager of the Hongde subsidiary Star Aquaculture, says 18 of the ponds are stocked with mullet (prized for their roe) and shrimp, while milkfish help clean the water in the reservoir ponds. In 2023, the first full year of operation, Chang says his team harvested over 100,000 kilograms of seafood. This August, they began stocking a cavernous indoor facility, also festooned with photovoltaics, to cultivate white-legged shrimp.

A number of other countries have been experimenting with aquavoltaics, including China, Chile, Bangladesh, and Norway, extending the concept to large solar arrays floating on rivers and bays. But nowhere else is the pairing of aquaculture and solar power seen as so crucial to the economy. Taiwan is striving to massively expand renewable generation to sustain its semiconductor fabs, and solar is expected to play a large role. But on this densely populated island—slightly larger than Maryland, smaller than the Netherlands—there’s not a lot of open space to install solar panels. The fishponds are hard to ignore. By the end of 2025, the government is looking to install 4.4 gigawatts of aquavoltaics to help meet its goal of 20 GW of solar generation.

Is Taiwan’s aquavoltaics plan unrealistic?

Meanwhile, though, solar developers are struggling to deliver on Taiwan’s ambitious goals, even as some projections suggest Taiwan will need over eight times more solar by 2050. And aquavoltaics in particular have come under scrutiny from environmental groups. In 2020, for example, reporter Cai Jiashan visited 100 solar plants built on agricultural land, including fishponds, and found dozens of cases where solar developers built more solar capacity than the law intended, or secured permits based on promises of continued farming that weren’t kept.

two men in water with a plastic basket with fish Star Aquaculture grows milkfish to help clean water for its breeding ponds.HDRenewables

On 7 July 2020, Taiwan’s Ministry of Agriculture responded by restricting solar development on farmland, in what the solar industry called the “Double-Seven Incident.” Many aquavoltaic projects were canceled while others were delayed. The latter included a 10-MW facility in Tainan that Google had announced to great fanfare in 2019 as its first renewable-energy investment in Asia, to supply power for the company’s Taiwan data centers. The array finally started up in 2023, three years behind schedule.

Critics of Taiwan’s renewed aquavoltaic plans thus see the government’s goal as unrealistic. Yuping Chen, executive director of the Taiwan Environment and Planning Association, a Taipei-based nonprofit dedicated to resolving conflicts between solar energy and agriculture, says of aquavoltaics, “It is claimed to be crucial by the government, but it’s impossible to realize.”

How aquavoltaics could revive fishing, boost revenue

Solar developers and government officials who endorse aquavoltaics argue that such projects could revive the island’s traditional fishing community. Taiwan’s fishing villages are aging and shrinking as younger people take city jobs. Climate change has also taken a toll. Severe storms damage fishpond embankments, while extreme heat and rainfall stress the fish.

4.4


Gigawatts of aquavoltaics that Taiwan wants to install by the end of 2025

Solar development could help reverse these trends. Several recent studies examining fishponds in Taiwan found that adding solar improves profitability, providing an opportunity to reinvigorate communities if agrivoltaic investors share their returns. Alan Wu, deputy director of the Green Energy Initiative at Taiwan’s Industrial Technology Research Institute, says the Hsinchu-based lab has opened a research station in Tainan to connect solar and aquaculture firms. ITRI is helping aquavoltaics facilities boost their revenues by figuring out how they can raise “species of high economic value that are normally more difficult to raise,” Wu says.

Such high-value products include the 27,000 pieces of sun-dried mullet roe that Hongde Renewable Energy’s Tainan site produced last year. The new indoor facility, meanwhile, should boost yields of the relatively pricey whiteleg shrimp. Chang expects the indoor harvests to fetch $500,000 to $600,000 annually, compared to $800,000 to $900,000 from the larger outdoor ponds.

The solar roof over the 100,000-liter indoor growth tanks protects the 2.7 million shrimp against weather and bird droppings. Chang says a patent-pending drain mechanically removes waste from each tank, and also sucks out the shrimp when they’re ready for harvest.

On left, photo of a white bird with a long flat black bill sitting on a rock. On right, photo of a black and white bird standing in tall grass. Land that Star Aquaculture set aside for wildlife now attracts endangered birds like the black-faced spoonbill [left] and the oriental stork [right].iStock (2)

The company has also set aside 9 percent of the site for wildlife, in response to concerns from conservationists. “Egrets, endangered oriental storks, and black-faced spoonbills continue to use the site,” Chang says. “If it was all covered with PV, it could impact their habitat.”

Such measures may not satisfy environmentalists, though. In a review published last month, researchers at Fudan University in Shanghai and two Chinese power firms concluded that China’s floating aquavoltaic installations—some of which already span 5 square kilometers—will “inevitably” alter the marine environment.

Aquavoltaic facilities that are entirely indoors may be an even harder sell as they scale up. Toshiba is backing such a plant in Tainan, to generate 120 MW for an unspecified “semiconductor manufacturer,” with plans for a 360-MW expansion. The resulting buildings could exclude wildlife from 5 square kilometers of habitat. Indoor projects could compensate by protecting land elsewhere. But, as Chen of the Taiwan Environment and Planning Association notes, developers of such sites may not take such measures unless they’re required by law to do so.

Your future air conditioner might act like a battery

As temperatures climb on hot days, many of us are quick to crank up our fans or air conditioners. These cooling systems can be a major stress on electrical grids, which has inspired some inventors to create versions that can store energy as well as use it. 

Cooling represents 20% of global electricity demand in buildings, a share that’s expected to rise as the planet warms and more of the world turns to cooling technology. During peak demand hours, air conditioners can account for over half the total demand on the grid in some parts of the world today.

New cooling technologies that incorporate energy storage could help by charging themselves when renewable electricity is available and demand is low, and still providing cooling services when the grid is stressed.  

“We say, take the problem, and turn it into a solution,” says Yaron Ben Nun, founder and chief technology officer of Nostromo Energy.

One of Nostromo Energy’s systems, which it calls an IceBrick, is basically a massive ice cube tray. It cools down a solution made of water and glycol that’s used to freeze individual capsules filled with water. One IceBrick can be made up of thousands of these containers, which each hold about a half-gallon, or roughly two liters, of water.

Insulation keeps the capsules frozen until it’s time to use them to help cool down a building. Then the ice is used to drop the temperature of the water-glycol mixture, which in turn cools down the water that circulates in the building’s chilling system. The whole thing is designed to work as an add-on with existing equipment, Ben Nun says. 

Nostromo installed its first system in the US in 2023, at the Beverly Hilton hotel in Los Angeles. It has a capacity of 1.4 megawatt-hours, and it also serves the neighboring Waldorf Astoria. The installation contains 40,000 capsules, amounting to about 150,000 pounds of ice. It usually charges up for 10 to 12 hours, starting at night and finishing around midday. That leaves it ready to discharge its cooling power between the late afternoon and evening, when demand on the grid is high and solar power is dropping off as the sun sets.

Using the IceBrick increases the total electricity needed for cooling, as some energy is lost to inefficiency during the cycle. But the goal is to decrease the energy demand during peak hours, which can cut costs for building owners, Ben Nun says. The company is in the process of securing roughly $300 million in funding, in part from the US Department of Energy’s Loan Programs Office, to fully finance 200 of these systems in California, he adds. 

closeup of the Ice brick system from Nostromo showing pipes with red connectors leading to metal cube shapes
Nostromo’s IceBrick is made of individual capsules that freeze and thaw to store energy.
NOSTROMO

While building owners can benefit immediately from these individual energy storage solutions, the real potential to help the grid comes when systems are linked together, Ben Nun says. 

When the grid is extremely stressed, utility companies are sometimes forced to shut off electricity supply to some areas, leaving people there without power when they need it most. Technologies that can adjust to meet the grid’s needs could help reduce reliance on these rolling blackouts. 

This kind of approach isn’t new—many commercial units have large tanks that hold chilled water or another cooling fluid that can drop the temperature in a building at a moment’s notice. But Nostromo’s technology can store more energy with much less material, because it uses the freezing and melting process rather than just cooling down a liquid, Ben Nun says. 

Startup Blue Frontier has differentiated itself in this space by building cooling systems that use desiccants. These materials can suck up moisture—like the little packets of silica beads that often come with new shoes and bags. But instead of those beads, the company is using a concentrated salt solution.

Blue Frontier’s cooling units pass a stream of air over a thin layer of the desiccant, which pulls moisture out of the air. That dry air is then used in an evaporative cooling process (similar to the way sweat cools your skin).

Desiccant cooling systems can be more efficient than the traditional vapor compression air conditioners on the market today, says Daniel Betts, founder and CEO of Blue Frontier. But the system also benefits from the ability to charge up during certain times and deliver cooling at other times.

The key to the energy storage aspect of desiccant cooling is the recharging: Like sponges, desiccants can only soak up a limited amount of water before they need to be wrung out. Blue Frontier does this by causing some water in the salt solution to evaporate, typically with a heat pump, to make it more concentrated. The recharging system can run constantly, or in bursts that can be timed to match periods when electricity is cheap or when more renewable power is available.

The benefit of these energy storage technologies is that they don’t require people turn their cooling systems down or off to help relieve stress on the grid, Betts says. 

Blue Frontier is testing several systems with customers today and hopes to manufacture larger quantities soon. And while commercial buildings are getting the first installations, Betts says he’s interested in bringing the technology to homes and other buildings too.

One challenge facing the companies working on these incoming technologies is finding a way to store large amounts of energy effectively without adding too much cost, says Ankit Kalanki, a principal in the carbon-free buildings program at the Rocky Mountain Institute, a nonprofit energy think tank. Cooling technologies like air conditioners are already expensive, so future solutions will have to be priced competitively to make it in the market. But given the world’s growing cooling demand, there’s still a significant opportunity for new technologies to help meet those needs, he adds.

Just rethinking air conditioning won’t be enough to meet the massive increase in energy demand for cooling, which could triple between now and 2050. To both do that and cut emissions, we’ll still need significantly more renewable energy capacity as well as gigantic battery installations on the grid. But adding flexibility into air-conditioning systems could help cut the investment needed to get to a zero-carbon grid.

Cooling systems can help us cope with our warming climate, Ben Nun says, but there’s a problem with the current options: “You’ll cool yourself, but you keep on warming the globe.”

A Bosch Engineer Speeds Hybrid Race Cars to the Finish Line



When it comes to motorsports, the need for speed isn’t only on the racetrack. Engineers who support race teams also need to work at a breakneck pace to fix problems, and that’s something Aakhilesh Singhania relishes.

Singhania is a senior applications engineer at Bosch Engineering, in Novi, Mich. He develops and supports electronic control systems for hybrid race cars, which feature combustion engines and battery-powered electric motors.

Aakhilesh Singhania


Employer:

Bosch Engineering

Occupation:

Senior applications engineer

Education:

Bachelor’s degree in mechanical engineering, Manipal Institute of Technology, India; master’s degree in automotive engineering, University of Michigan, Ann Arbor

His vehicles compete in two iconic endurance races: the Rolex 24 at Daytona in Daytona Beach, Fla., and the 24 Hours of Le Mans in France. He splits his time between refining the underlying technology and providing trackside support on competition day. Given the relentless pace of the racing calendar and the intense time pressure when cars are on the track, the job is high octane. But Singhania says he wouldn’t have it any other way.

“I’ve done jobs where the work gets repetitive and mundane,” he says. “Here, I’m constantly challenged. Every second counts, and you have to be very quick at making decisions.”

An Early Interest in Motorsports

Growing up in Kolkata, India, Singhania picked up a fascination with automobiles from his father, a car enthusiast.

In 2010, when Singhania began his mechanical engineering studies at India’s Manipal Institute of Technology, he got involved in the Formula Student program, an international engineering competition that challenges teams of university students to design, build, and drive a small race car. The cars typically weigh less than 250 kilograms and can have an engine no larger than 710 cubic centimeters.

“It really hooked me,” he says. “I devoted a lot of my spare time to the program, and the experience really motivated me to dive further into motorsports.”

One incident in particular shaped Singhania’s career trajectory. In 2013, he was leading Manipal’s Formula Student team and was one of the drivers for a competition in Germany. When he tried to start the vehicle, smoke poured out of the battery, and the team had to pull out of the race.

“I asked myself what I could have done differently,” he says. “It was my lack of knowledge of the electrical system of the car that was the problem.” So, he decided to get more experience and education.

Learning About Automotive Electronics

After graduating in 2014, Singhania began working on engine development for Indian car manufacturer Tata Motors in Pune. In 2016, determined to fill the gaps in his knowledge about automotive electronics, he left India to begin a master’s degree program in automotive engineering at the University of Michigan in Ann Arbor.

He took courses in battery management, hybrid controls, and control-system theory, parlaying this background into an internship with Bosch in 2017. After graduation in 2018, he joined Bosch full-time as a calibration engineer, developing technology for hybrid and electric vehicles.

Transitioning into motorsports required perseverance, Singhania says. He became friendly with the Bosch team that worked on electronics for race cars. Then in 2020 he got his big break.

That year, the U.S.-based International Motor Sports Association and the France-based Automobile Club de l’Ouest created standardized rules to allow the same hybrid race cars to compete in both the Sportscar Championship in North America, host of the famous Daytona race, and the global World Endurance Championship, host of Le Mans.

The Bosch motorsports team began preparing a proposal to provide the standardized hybrid system. Singhania, whose job already included creating simulations of how vehicles could be electrified, volunteered to help.

“I’m constantly challenged. Every second counts, and you have to be very quick at making decisions.”

The competition organizers selected Bosch as lead developer of the hybrid system that would be provided to all teams. Bosch engineers would also be required to test the hardware they supplied to each team to ensure none had an advantage.

“The performance of all our parts in all the cars has to fall within 1 percent of each other,” Singhania says.

After Bosch won the contract, Singhania officially became a motorsports calibration engineer, responsible for tweaking the software to fit the idiosyncrasies of each vehicle.

In 2022 he stepped up to his current role: developing software for the hybrid control unit (HCU), which is essentially the brains of the vehicle. The HCU helps coordinate all of the different subsystems such as the engine, battery, and electric motor and is responsible for balancing power requirements among these different components to maximize performance and lifetime.

Bosch’s engineers also designed software known as an equity model, which runs on the HCU. It is based on historical data collected from the operation of the hybrid systems’ various components, and controls their performance in real time to ensure all the teams’ hardware operates at the same level.

In addition, Singhania creates simulations of the race cars, which are used to better understand how the different components interact and how altering their configuration would affect performance.

Troubleshooting Problems on Race Day

Technology development is only part of Singhania’s job. On race days, he works as a support engineer, helping troubleshoot problems with the hybrid system as they crop up. Singhania and his colleagues monitor each team’s hardware using computers on Bosch’s race-day trailer, a mobile nerve center hardwired to the organizers’ control center on the race track.

“We are continuously looking at all the telemetry data coming from the hybrid system and analyzing [the system’s] health and performance,” he says.

If the Bosch engineers spot an issue or a team notifies them of a problem, they rush to the pit stall to retrieve a USB stick from the vehicle, which contains detailed data to help them diagnose and fix the issue.

After the race, the Bosch engineers analyze the telemetry data to identify ways to boost the standardized hybrid system’s performance for all the teams. In motorsports, where the difference between winning and losing can come down to fractions of a second, that kind of continual improvement is crucial.

Customers “put lots of money into this program, and they are there to win,” Singhania says.

Breaking Into Motorsports Engineering

Many engineers dream about working in the fast-paced and exciting world of motorsports, but it’s not easy breaking in. The biggest lesson Singhania learned is that if you don’t ask, you don’t get invited.

“Keep pursuing them because nobody’s going to come to you with an offer,” he says. “You have to keep talking to people and be ready when the opportunity presents itself.”

Demonstrating that you have experience contributing to challenging projects is a big help. Many of the engineers Bosch hires have been involved in Formula Student or similar automotive-engineering programs, such as the EcoCAR EV Challenge, says Singhania.

The job isn’t for everyone, though, he says. It’s demanding and requires a lot of travel and working on weekends during race season. But if you thrive under pressure and have a knack for problem solving, there are few more exciting careers.

This article appears in the July 2024 print issue as “Aakhilesh Singhania.”

IEEE Educational Video for Kids Spotlights Climate Change



When it comes to addressing climate change, the “in unity there’s strength” adage certainly applies.

To support IEEE’s climate change initiative, which highlights innovative solutions and approaches to the climate crisis, IEEE’s TryEngineering program has created a collection of lesson plans, activities, and events that cover electric vehicles, solar and wind power systems, and more.

TryEngineering, a program within IEEE Educational Activities, aims to foster the next generation of technology innovators by providing preuniversity educators and students with resources.

To help bring the climate collection to more students, TryEngineering has partnered with the Museum of Science in Boston. The museum, one of the world’s largest science centers, reaches nearly 5 million people annually through its physical location, nearby classrooms, and online platforms.

TryEngineering worked with the museum to distribute a nearly four-minute educational video created by Moment Factory, a multimedia studio specializing in immersive experiences. Using age-appropriate language, the video, which is posted on TryEngineering’s climate change page, explores the issue through visual models and scientific explanations.

“Since the industrial revolution, humans have been digging up fossil fuels and burning them, which releases CO2 into the atmosphere in unprecedented quantities,” the video says. It notes that in the past 60 years, atmospheric carbon dioxide increased at a rate 100 times faster than previous natural changes.

“We are committed to energizing students around important issues like climate change and helping them understand how engineering can make a difference.”

The video explains the impact of pollutants such as lead and ash, and it adds that “when we work together, we can change the global environment.” The video encourages students to contribute to a global solution by making small, personal changes.

“We’re thrilled to contribute to the IEEE climate change initiative by providing IEEE volunteers and educators access to TryEngineering’s collection, so they have resources to use with students,” says Debra Gulick, director of IEEE student and academic education programs.

“We are excited to partner with the Museum of Science to bring even more awareness and exposure of this important issue to the school setting,” Gulick says. “Working with prominent partners like the museum, we are committed to energizing students around important issues like climate change and helping them understand how engineering can make a difference.”

This Engineer’s Solar Panels Are Breaking Efficiency Records



When Yifeng Chen was a teenager in Shantou, China, in the early 2000s, he saw a TV program that amazed him. The show highlighted rooftop solar panels in Germany, explaining that the panels generated electricity to power the buildings and even earned the owners money by letting them sell extra energy back to the electricity company.

Yifeng Chen


Employer

Trina Solar

Title

Assistant vice president of technology

Member Grade

Member

Alma Maters

Sun Yat-sen University, in Guangzhou, China, and Leibniz University Hannover, in Germany

An incredulous Chen marveled at not only the technology but also the economics. A power authority would pay its customers?

It sounded like magic: useful and valuable electricity extracted from simple sunlight. The wonder of it all has fueled his dreams ever since.

In 2013 Chen earned a Ph.D. in photovoltaic sciences and technologies, and today he’s assistant vice president of technology at China’s Trina Solar, a Changzhou-based company that is one of the largest PV manufacturers in the world. He leads the company’s R&D group, whose efforts have set more than two dozen world records for solar power efficiency and output.

For Chen’s contributions to the science and technology of photovoltaic energy conversion, the IEEE member received the 2023 IEEE Stuart R. Wenham Young Professional Award from the IEEE Electron Devices Society.

“I was quite surprised and so grateful” to receive the Wenham Award, Chen says. “It’s a very high-level recognition, and there are so many deserving experts from around the world.”

Trina Solar’s push for more efficient hardware

Today’s commercial solar panels typically achieve about 20 percent efficiency: They can turn one-fifth of captured sunlight into electricity. Chen’s group is trying to make the panels more efficient.

The group is focusing on optimizing solar cell designs, including the passivated emitter and rear cell (PERC), which is the industry standard for commodity solar panels.

Invented in 1983, PERCs are used today in nearly 90 percent of solar panels on the market. They incorporate coatings on the front and back to capture sunlight more effectively and to avoid losing energy, both at the surfaces and as the sunlight travels through the cell. The coatings, known as passivation layers, are made from materials such as silicon nitride, silicon dioxide, and aluminum oxide. The layers keep negatively charged free electrons and positively charged electron holes apart, preventing them from combining at the surface of the solar cell and wasting energy.

Chen and his team have developed several ways to boost the performance of PERC panels, hitting a record of 24.5 percent efficiency in 2022. One of the technologies is a multilayer antireflective coating that helps solar panels trap more light. They also created extremely fine metallization fingers—narrow lines on solar cells’ surfaces—to collect and transport the electric current and help capture more sunlight. And they developed an advanced method for laying the strips of conductive metal that run across the solar cell, known as bus bars.

Experts predict the maximum efficiency of PERC technology will be reached soon, topping out at about 25 percent.

a person wearing a white mask, white gloves and a blue suit holding a blue square with white lines on it IEEE Member Yifeng Chen displays an i-TOPCon solar module, which has a production efficiency of more than 23 percent and a power output of up to 720 watts.Trina Solar

“So the question is: How do we get solar cells even more efficient?” Chen says.

During the past few years he and his group have been working on tunnel oxide passivated contact (TOPCon) technology. A TOPCon cell uses a thin layer of “tunneling oxide” insulating material—typically silicon dioxide—which is applied to the solar cell’s surface. Similar to the passivation layers on PERC cells, the tunnel oxide stops free electrons and electron holes from combining and wasting energy.

In 2022 Trina created a TOPCon-type panel with a record 25.5 percent efficiency, and two months ago the company announced it had achieved a record 740.6 watts for a mass-produced TOPCon solar module. The latter was the 26th record Trina set for solar power–related efficiencies and outputs.

To achieve that record-breaking performance for their TOPCon panels, Chen and his team optimized the company’s manufacturing processes including laser-induced firing, in which a laser heats part of the solar cell and creates bonds between the metal contacts and the silicon wafer. The resulting connections are stronger and better aligned, enhancing efficiency.

“We’re trying to keep improving things to trap just a little bit more sunlight,” Chen says. “Gaining 1 or 2 percent more efficiency is huge. These may sound like very tiny increases, but at scale these small improvements create a lot of value in terms of economics, sustainability, and value to society.”

As the efficiency of solar cells rises and prices drop, Chen says, he expects solar power to continue to grow around the world. China currently leads the world in installed solar power capacity, accounting for about 40 percent of global capacity. The United States is a distant second, with 12 percent, according to a 2023 Rystad Energy report. The report predicts that China’s 500 gigawatts of solar capacity in 2023 is likely to exceed 1 terawatt by 2026.

“I’m inspired by using science to create something useful for human beings, and then driven by the pursuit for excellence,” Chen says. “We can always learn something new to make that change, improve that piece of technology, and get just that little bit better.”

Trained by solar-power pioneers

Chen attended Sun Yat-sen University in Guangzhou, China, earning a bachelor’s degree in optics sciences and technologies in 2008. He stayed on to pursue a Ph.D. in photovoltaics sciences and technologies. His research was on high-efficiency solar cells made from wafer-based crystalline silicon. His adviser was Hui Shen, a leading PV professor and founder of the university’s Institute for Solar Energy Systems. Chen calls him “the first of three very important figures in my scientific career.”

In 2011 Chen spent a year as a Ph.D. student at Leibniz University Hannover, in Germany. There he studied under Pietro P. Altermatt, the second influential figure in his career.

Altermatt—a prominent silicon solar-cell expert who would later become principal scientist at Trina—advised Chen on his computational techniques for modeling and analyzing the behavior of 2D and 3D solar cells. The models play a key role in designing solar cells to optimize their output.

“Gaining 1 or 2 percent more efficiency is huge. These may sound like very tiny increases, but at scale, these small improvements create a lot of value in terms of economics, sustainability, and value to society.”

“Dr. Altermatt changed how I look at things,” Chen says. “In Germany, they really focus on device physics.”

After completing his Ph.D., Chen became a technical assistant at Trina, where he met the third highly influential person in his career: Pierre Verlinden, a pioneering photovoltaic researcher who was the company’s chief scientist.

At Trina, Chen quickly ascended through R&D roles. He has been the company’s assistant vice president of technology since 2023.

IEEE’s “treasure” trove of research

Chen joined IEEE as a student because he wanted to attend the IEEE Photovoltaic Specialists Conference, the longest-running event dedicated to photovoltaics, solar cells, and solar power.

The membership was particularly beneficial during his Ph.D. studies, he says, because he used the IEEE Xplore Digital Library to access archival papers.

“My work has certainly been inspired by papers I found via IEEE,” Chen says. “Plus, you end up clicking around and reading other work that isn’t related to your field but is so interesting.

“The publication repository is a treasure. It’s eye-opening to see what’s going on inside and outside of your industry, with new discoveries happening all the time.”

Five Cool Tech Demos From the ARPA-E Summit



Nearly 400 exhibitors representing the boldest energy innovations in the United States came together last week at the annual ARPA-E Energy Innovation Summit. The conference, hosted in Dallas by the U.S. Advanced Research Projects Agency–Energy (ARPA-E), showcased the agency’s bets on early-stage energy technologies that can disrupt the status quo. U.S. Secretary of Energy Jennifer Granholm spoke at the summit. “The people in this room are America’s best hope” in the race to unleash the power of clean energy, she said. “The technologies you create will decide whether we win that race. But no pressure,” she quipped. IEEE Spectrum spent three days meandering the aisles of the showcase. Here are five of our favorite demonstrations.

Gas Li-ion batteries thwart extreme cold

South 8 Technologies demonstrates the cold tolerance of its Li-ion battery by burying it in ice at the 2024 ARPA-E Energy Innovation Summit. Emily Waltz

Made with a liquified gas electrolyte instead of the standard liquid solvent, a new kind of lithium-ion battery that stands up to extreme cold, made by South 8 Technologies in San Diego, won’t freeze until temps drop below –80 °C. That’s a big improvement on conventional Li-ion batteries, which start to degrade when temps reach 0 °C and shut down at about –20 °C. “You lose about half of your range in an electric vehicle if you drive it in the middle of winter in Michigan,” says Cyrus Rustomji, cofounder of South 8. To prove the company’s point, Rustomji and his team set out a bucket of dry ice at nearly –80 °C at their booth at the ARPA-E summit and put flashlights in it—one powered by a South 8 battery and one powered by a conventional Li-ion cell. The latter flashlight went out after about 10 minutes, and South 8’s kept going for the next 15 hours. Rustomji says he expects EV batteries made with South 8’s technology to maintain nearly full range at –40 °C, and gradually degrade in temperatures lower than that.

A shining flashlight sits on dry ice next to a container of battery cells. South 8 Technologies

Conventional Li-ion batteries use liquid solvents, such as ethylene and dimethyl carbonate, as the electrolyte. The electrolyte serves as a medium through which lithium salt moves from one electrode to the other in the battery, shuttling electricity. When it’s cold, the carbonates thicken, which lowers the power of the battery. They can also freeze, which shuts down all conductivity. South 8 swapped out the carbonate for some industrial liquified gases with low freezing points (a recipe the company won’t disclose).

Using liquified gases also reduces fire risk because the gas very quickly evaporates from a damaged battery cell, removing fuel that could burn and cause the battery to catch fire. If a conventional Li-ion battery gets damaged, it can short-circuit and quickly become hot—like over 800 °C hot. This causes the liquid electrolyte to heat adjacent cells and potentially start a fire.

There’s another benefit to this battery, and this one will make EV drivers very happy: It will take only 10 minutes to reach an 80 percent charge in EVs powered by these batteries, Rustomji estimates. That’s because liquified gas has a lower viscosity than carbonate-based electrolytes, which allows the lithium salt to move from one electrode to the other at a faster rate, shortening the time it takes to recharge the battery.

South 8’s latest improvement is a high-voltage cathode that reduces material costs and could enable fast charging down to 5 minutes for a full charge. “We have the world record for a high-voltage, low-temperature cathode,” says Rustomji.

Liquid cooling won’t leak on servers

Chilldyne guarantees that its liquid-cooling system won’t leak even if tubes get hacked in half, as IEEE Spectrum editor Emily Waltz demonstrates at the 2024 ARPA-E Energy Innovation Summit. Emily Waltz

Data centers need serious cooling technologies to keep servers from overheating, and sometimes air-conditioning just isn’t enough. In fact, the latest Blackwell chips from Nvidia require liquid cooling, which is more energy efficient than air. But liquid cooling tends to make data-center operators nervous. “A bomb won’t do as much damage as a leaky liquid-cooling system,” says Steve Harrington, CEO of Chilldyne. His company, based in Carlsbad, Calif., offers liquid cooling that’s guaranteed not to leak, even if the coolant lines get chopped in half. (They aren’t kidding: Chilldyne brought an axe to its demonstration at ARPA-E and let Spectrum try it out. Watch the blue cooling liquid immediately disappear from the tube after it’s chopped.)

Hands holding pliers snip at a tube of liquid coolant in a server. Chilldyne

The system is leakproof because Chilldyne’s negative-pressure system pulls rather than pushes liquid coolant through tubes, like a vacuum. The tubes wind through servers, absorbing heat through cold plates, and return the warmed liquid to tanks in a cooling distribution unit. This unit transfers the heat outside and supplies cooled liquid back to the servers. If a component anywhere in the cooling loop breaks, the liquid is immediately sucked back into the tanks before it can leak. Key to the technology: low-thermal-resistance cold plates attached to each server’s processors, such as the CPUs or GPUs. The cold plates absorb heat by convection, transferring the heat to the coolant tube that runs through it. Chilldyne optimized the cold plate using corkscrew-shaped metal channels, called turbulators, that force water around them “like little tornadoes,” maximizing the heat absorbed, says Harrington. The company developed the cold plate under an ARPA-E grant and is now measuring the energy savings of liquid cooling through an ARPA-E program.

Salvaged mining waste also sequesters CO2

Photo of a woman in a red jacket holding a container. Phoenix Tailings’ senior research scientist Rita Silbernagel explains how mining waste contains useful metals and rare earth elements and can also be used as a place to store carbon dioxide.Emily Waltz

Mining leaves behind piles of waste after the commercially viable material is extracted. This waste, known as tailings, can contain rare earth elements and valuable metals that are too difficult to extract with conventional mining techniques. Phoenix Tailings—a startup based in Woburn, Mass.—extracts metals and rare earth elements from tailings in a process that leaves behind no waste and creates no direct carbon dioxide emissions. The company’s process starts with a hydrometallurgical treatment that separates rare earth elements from the tailings, which contain iron, aluminum, and other common elements. Next the company uses a novel solvent extraction method to separate the rare earth elements from one another and purify the desired element in the form of an oxide. The rare earth oxide then undergoes a molten-salt electrolysis process that converts it into a solid metal form. Phoenix Tailings focuses on extracting neodymium, neodymium-praseodymium alloy, dysprosium, and ferro dysprosium alloy, which are rare earth metals used in permanent magnets for EVs, wind turbines, jet engines, and other applications. The company is evaluating several tailings sites in the United States, including in upstate New York.

The company has also developed a process to extract metals such as nickel, copper, and cobalt from mining tailings while simultaneously sequestering carbon dioxide. The approach involves injecting CO2 into the tailings, where it reacts with minerals, transforming them into carbonates—compounds that contain the carbonate ion, which contains three oxygen atoms and one carbon atom. After the mineral carbonation process, the nickel or other metals are selectively leached from the mixture, yielding high-quality nickel that can be used by EV-battery and stainless-steel industries.

Better still, this whole process, says Rita Silbernagel, senior research scientist at Phoenix Tailings, absorbs more CO2 than it emits.

Hydrokinetic turbines: a new business model

Emrgy adjusts the height of its hydrokinetic turbines at the 2024 ARPA-E Energy Innovation Summit. The company plans to install them in old irrigation channels to generate renewable energy and new revenue streams for rural communities. Emily Waltz

These hydrokinetic turbines run in irrigation channels, generating electricity and revenue for rural communities. Developed by Emrgy in Atlanta, the turbines can change in height and blade pitch based on the flow of the water. The company plans to put them in irrigation channels that were built to bring water from snowmelt in the Rocky Mountains to agricultural areas in the western United States. Emrgy estimates that there are more than 160,000 kilometers of these waterways in the country. The system is aging and losing water, but it’s hard for water districts to justify the cost of repairing them, says Tom Cuthbert, chief technology officer at Emrgy. The company’s solution is to place its hydrokinetic turbines throughout these waterways as a way to generate renewable electricity and pay for upgrades to the irrigation channels.

The concept of placing hydrokinetic turbines in waterways isn’t new, but until recent years, connecting them to the grid wasn’t practical. Emrgy’s timing takes advantage of the groundwork laid by the solar power industry. The company has five pilot projects in the works in the United States and New Zealand. “We found that existing water infrastructure is a massive overlooked real estate segment that is ripe for renewable energy development,” says Emily Morris, CEO and founder of Emrgy.

Pressurized water stores energy deep underground

Photo of blue pipe with a display board. Quidnet Energy brought a wellhead to the 2024 ARPA-E Energy Innovation Summit to demonstrate its geoengineered energy-storage system.Emily Waltz

Quidnet Energy brought a whole wellhead to the ARPA-E summit to demonstrate its underground pumped hydro storage technique. The Houston-based company’s geoengineered system stores energy as pressurized water deep underground. It consists of a surface-level pond, a deep well, an underground reservoir at the end of the well, and a pump system that moves pressurized water from the pond to the underground reservoir and back. The design doesn’t require an elevation change like traditional pumped storage hydropower.

An illustration of how a pressurized pump works. Quidnet’s system consists of a surface-level pond, a deep well, an underground reservoir at the end of the well, and a pump system that moves pressurized water from the pond to the underground reservoir and back.Quidnet Energy

It works like this: Electricity from renewable sources powers a pump that sends water from the surface pond into a wellhead and down a well that’s about 300 meters deep. At the end of the well, the pressure from the pumped water flows into a previously engineered fracture in the rock, creating a reservoir that’s hundreds of meters wide and sits beneath the weight of the whole column of rock above it, says Bunker Hill, vice president of engineering at Quidnet. The wellhead then closes and the water remains under high pressure, keeping energy stored in the reservoir for days if necessary. When electricity is needed, the well is opened, letting the pressurized water run up the same well. Above ground, the water passes through a hydroelectric turbine, generating 2 to 8 megawatts of electricity. The spent water then returns to the surface pond, ready for the next cycle. “The hard part is making sure the underground reservoir doesn’t lose water,” says Hill. To that end, the company developed customized sealing solutions that get injected into the fracture, sealing in the water.

❌
❌