Normal view

There are new articles available, click to refresh the page.
Yesterday — 8 November 2024Main stream

Video Friday: Robot Dog Handstand



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

Just when I thought quadrupeds couldn’t impress me anymore...

[ Unitree Robotics ]

Researchers at Meta FAIR are releasing several new research artifacts that advance robotics and support our goal of reaching advanced machine intelligence (AMI). These include Meta Sparsh, the first general-purpose encoder for vision-based tactile sensing that works across many tactile sensors and many tasks; Meta Digit 360, an artificial fingertip-based tactile sensor that delivers detailed touch data with human-level precision and touch-sensing; and Meta Digit Plexus, a standardized platform for robotic sensor connections and interactions that enables seamless data collection, control and analysis over a single cable.

[ Meta ]

The first bimanual Torso created at Clone includes an actuated elbow, cervical spine (neck), and anthropomorphic shoulders with the sternoclavicular, acromioclavicular, scapulothoracic and glenohumeral joints. The valve matrix fits compactly inside the ribcage. Bimanual manipulation training is in progress.

[ Clone Inc. ]

Equipped with a new behavior architecture, Nadia navigates and traverses many types of doors autonomously. Nadia also demonstrates robustness to failed grasps and door opening attempts by automatically retrying and continuing. We present the robot with pull and push doors, four types of opening mechanisms, and even spring-loaded door closers. A deep neural network and door plane estimator allow Nadia to identify and track the doors.

[ Paper preprint by authors from Florida Institute for Human and Machine Cognition ]

Thanks, Duncan!

In this study, we integrate the musculoskeletal humanoid Musashi with the wire-driven robot CubiX, capable of connecting to the environment, to form CubiXMusashi. This combination addresses the shortcomings of traditional musculoskeletal humanoids and enables movements beyond the capabilities of other humanoids. CubiXMusashi connects to the environment with wires and drives by winding them, successfully achieving movements such as pull-up, rising from a lying pose, and mid-air kicking, which are difficult for Musashi alone.

[ CubiXMusashi, JSK Robotics Laboratory, University of Tokyo ]

Thanks, Shintaro!

An old boardwalk seems like a nightmare for any robot with flat feet.

[ Agility Robotics ]

This paper presents a novel learning-based control framework that uses keyframing to incorporate high-level objectives in natural locomotion for legged robots. These high-level objectives are specified as a variable number of partial or complete pose targets that are spaced arbitrarily in time. Our proposed framework utilizes a multi-critic reinforcement learning algorithm to effectively handle the mixture of dense and sparse rewards. In the experiments, the multi-critic method significantly reduces the effort of hyperparameter tuning compared to the standard single-critic alternative. Moreover, the proposed transformer-based architecture enables robots to anticipate future goals, which results in quantitative improvements in their ability to reach their targets.

[ Disney Research paper ]

Human-like walking where that human is the stompiest human to ever human its way through Humanville.

[ Engineai ]

We present the first static-obstacle avoidance method for quadrotors using just an onboard, monocular event camera. Quadrotors are capable of fast and agile flight in cluttered environments when piloted manually, but vision-based autonomous flight in unknown environments is difficult in part due to the sensor limitations of traditional onboard cameras. Event cameras, however, promise nearly zero motion blur and high dynamic range, but produce a large volume of events under significant ego-motion and further lack a continuous-time sensor model in simulation, making direct sim-to-real transfer not possible.

[ Paper University of Pennsylvania and University of Zurich ]

Cross-embodiment imitation learning enables policies trained on specific embodiments to transfer across different robots, unlocking the potential for large-scale imitation learning that is both cost-effective and highly reusable. This paper presents LEGATO, a cross-embodiment imitation learning framework for visuomotor skill transfer across varied kinematic morphologies. We introduce a handheld gripper that unifies action and observation spaces, allowing tasks to be defined consistently across robots.

[ LEGATO ]

The 2024 Xi’an Marathon has kicked off! STAR1, the general-purpose humanoid robot from Robot Era, joins runners in this ancient yet modern city for an exciting start!

[ Robot Era ]

In robotics, there are valuable lessons for students and mentors alike. Watch how the CyberKnights, a FIRST robotics team champion sponsored by RTX, with the encouragement of their RTX mentor, faced challenges after a poor performance and scrapped its robot to build a new one in just nine days.

[ CyberKnights ]

In this special video, PAL Robotics takes you behind the scenes of our 20th-anniversary celebration, a memorable gathering with industry leaders and visionaries from across robotics and technology. From inspiring speeches to milestone highlights, the event was a testament to our journey and the incredible partnerships that have shaped our path.

[ PAL Robotics ]

Thanks, Rugilė!

Before yesterdayMain stream

Video Friday: Swiss-Mile Robot vs. Humans



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

Swiss-Mile’s robot (which is really any robot that meets the hardware requirement to run their software) is faster than “most humans.” So what does that mean, exactly?

The winner here is Riccardo Rancan, who doesn’t look like he was trying especially hard—he’s the world champion in high-speed urban orienteering, which is a sport that I did not know existed but sounds pretty awesome.

[ Swiss-Mile ]

Thanks, Marko!

Oh good, we’re building giant fruit fly robots now.

But seriously, this is useful and important research because understanding the relationship between a nervous system and a bunch of legs can only be helpful as we ask more and more of legged robotic platforms.

[ Paper ]

Thanks, Clarus!

Watching humanoids get up off the ground will never not be fascinating.

[ Fourier ]

The Kepler Forerunner K2 represents the Gen 5.0 robot model, showcasing a seamless integration of the humanoid robot’s cerebral, cerebellar, and high-load body functions.

[ Kepler ]

Diffusion Forcing combines the strength of full-sequence diffusion models (like SORA) and next-token models (like LLMs), acting as either or a mix at sampling time for different applications without retraining.

[ MIT ]

Testing robot arms for space is no joke.

[ GITAI ]

Welcome to the Modular Robotics Lab (ModLab), a subgroup of the GRASP Lab and the Mechanical Engineering and Applied Mechanics Department at the University of Pennsylvania under the supervision of Prof. Mark Yim.

[ ModLab ]

This is much more amusing than it has any right to be.

[ Westwood Robotics ]

Let’s go for a walk with Adam at IROS’24!

[ PNDbotics ]

From Reachy 1 in 2023 to our newly launched Reachy 2, our grippers have been designed to enhance precision and dexterity in object manipulation. Some of the models featured in the video are prototypes used for various tests, showing the innovation behind the scenes.

[ Pollen ]

I’m not sure how else you’d efficiently spray the tops of trees? Drones seem like a no-brainer here.

[ SUIND ]

Presented at ICRA40 in Rotterdam, we show the challenges faced by mobile manipulation platforms in the field. We at CSIRO Robotics are working steadily towards a collaborative approach to tackle such challenging technical problems.

[ CSIRO ]

ABB is best known for arms, but it looks like they’re exploring AMRs (autonomous mobile robots) for warehouse operations now.

[ ABB ]

Howie Choset, Lu Li, and Victoria Webster-Wood of the Manufacturing Futures Institute explain their work to create specialized sensors that allow robots to “feel” the world around them.

[ CMU ]

Columbia Engineering Lecture Series in AI: “How Could Machines Reach Human-Level Intelligence?” by Yann LeCun.

Animals and humans understand the physical world, have common sense, possess a persistent memory, can reason, and can plan complex sequences of subgoals and actions. These essential characteristics of intelligent behavior are still beyond the capabilities of today’s most powerful AI architectures, such as Auto-Regressive LLMs.
I will present a cognitive architecture that may constitute a path towards human-level AI. The centerpiece of the architecture is a predictive world model that allows the system to predict the consequences of its actions. and to plan sequences of actions that that fulfill a set of objectives. The objectives may include guardrails that guarantee the system’s controllability and safety. The world model employs a Joint Embedding Predictive Architecture (JEPA) trained with self-supervised learning, largely by observation.

[ Columbia ]

Video Friday: Mobile Robot Upgrades



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ROSCon 2024: 21–23 October 2024, ODENSE, DENMARK
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH
Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

One of the most venerable (and recognizable) mobile robots ever made, the Husky, has just gotten a major upgrade.

Shipping early next year.

[ Clearpath Robotics ]

MAB Robotics is developing legged robots for the inspection and maintenance of industrial infrastructure. One of the initial areas for deploying this technology is underground infrastructure, such as water and sewer canals. In these environments, resistance to factors like high humidity and working underwater is essential. To address these challenges, the MAB team has built a walking robot capable of operating fully submerged, based on exceptional self-developed robotics actuators. This innovation overcomes the limitations of current technologies, offering MAB’s first clients a unique service for trenchless inspection and maintenance tasks.

[ MAB Robotics ]

Thanks, Jakub!

The G1 robot can perform a standing long jump of up to 1.4 meters, possibly the longest jump ever achieved by a humanoid robot of its size in the world, standing only 1.32 meters tall.

[ Unitree Robotics ]

Apparently, you can print out a functional four-fingered hand on an inkjet.

[ UC Berkeley ]

We present SDS (``See it. Do it. Sorted’), a novel pipeline for intuitive quadrupedal skill learning from a single demonstration video leveraging the visual capabilities of GPT-4o. We validate our method on the Unitree Go1 robot, demonstrating its ability to execute variable skills such as trotting, bounding, pacing, and hopping, achieving high imitation fidelity and locomotion stability.

[ Robot Perception Lab, University College London ]

You had me at “3D desk octopus.”

[ UIST 2024 ACM Symposium on User Interface Software and Technology ]

Top-notch swag from Dusty Robotics

[ Dusty Robotics ]

I’m not sure how serious this shoes-versus-no-shoes test is, but it’s an interesting result nonetheless.

[ Robot Era ]

Thanks, Ni Tao!

Introducing TRON 1, the first multimodal biped robot! With its innovative “Three-in-One” modular design, TRON 1 can easily switch among Point-Foot, Sole, and Wheeled foot ends.

[ LimX Dynamics ]

Recent works in the robot-learning community have successfully introduced generalist models capable of controlling various robot embodiments across a wide range of tasks, such as navigation and locomotion. However, achieving agile control, which pushes the limits of robotic performance, still relies on specialist models that require extensive parameter tuning. To leverage generalist-model adaptability and flexibility while achieving specialist-level agility, we propose AnyCar, a transformer-based generalist dynamics model designed for agile control of various wheeled robots.

[ AnyCar ]

Discover the future of aerial manipulation with our untethered soft robotic platform with onboard perception stack! Presented at the 2024 Conference on Robot Learning, in Munich, this platform introduces autonomous aerial manipulation that works in both indoor and outdoor environments—without relying on costly off-board tracking systems.

[ Paper ] via [ ETH Zurich Soft Robotics Laboratory ]

Deploying perception modules for human-robot handovers is challenging because they require a high degree of reactivity, generalizability, and robustness to work reliably for diverse cases. Here, we show hardware handover experiments using our efficient and object-agnostic real-time tracking framework, specifically designed for human-to-robot handover tasks with legged manipulators.

[ Paper ] via [ ETH Zurich Robotic Systems Lab ]

Azi and Ameca are killing time, but Azi struggles being the new kid around. Engineered Arts desktop robots feature 32 actuators, 27 for facial control alone, and 5 for the neck. They include AI conversational ability including GPT-4o support, which makes them great robotic companions, even to each other. The robots are following a script for this video, using one of their many voices.

[ Engineered Arts ]

Plato automates carrying and transporting, giving your staff more time to focus on what really matters, improving their quality of life. With a straightforward setup that requires no markers or additional hardware, Plato is incredibly intuitive to use—no programming skills needed.

[ Aldebaran ]

This UPenn GRASP Lab seminar is from Antonio Loquercio, on “Simulation: What made us intelligent will make our robots intelligent.”

Simulation-to-reality transfer is an emerging approach that enables robots to develop skills in simulated environments before applying them in the real world. This method has catalyzed numerous advancements in robotic learning, from locomotion to agile flight. In this talk, I will explore simulation-to-reality transfer through the lens of evolutionary biology, drawing intriguing parallels with the function of the mammalian neocortex. By reframing this technique in the context of biological evolution, we can uncover novel research questions and explore how simulation-to-reality transfer can evolve from an empirically driven process to a scientific discipline.

[ University of Pennsylvania ]

Video Friday: Reachy 2



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH
Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

At ICRA 2024, we sat down with Pollen Robotics to talk about Reachy 2 O_o

[ Pollen Robotics ]

A robot pangolin designed to plant trees is the winner of the 2023 Natural Robotics Contest, which rewards robot designs inspired by nature. As the winning entry, the pangolin—dubbed “Plantolin”—has been brought to life by engineers at the University of Surrey in the United Kingdom. Out of 184 entries, the winning design came from Dorothy, a high school student from California.

Dr. Rob Siddall, a roboticist at the University of Surrey who built Plantolin, said, “In the wild, large animals will cut paths through the overgrowth and move seeds. This doesn’t happen nearly as much in urban areas like the South East of England—so there’s definitely room for a robot to help fill that gap. Dorothy’s brilliant design reminds us how we can solve some of our biggest challenges by looking to nature for inspiration.”

[ Plantolin ]

Our novel targeted throwing end-effector is designed to seamlessly integrate with drones and mobile manipulators. It utilizes elastic energy for efficient picking, placing, and throwing of objects, offering a versatile solution for industrial and warehouse applications. By combining a physics-based model with residual learning, it achieves increased accuracy in targeted throwing, even with previously unseen objects.

[ Throwing Manipulation, multimedia extension for IEEE Robotics and Automation Letters ]

Thanks, Nagamanikandan!

Control of off-road vehicles is challenging due to the complex dynamic interactions with the terrain. Accurate modeling of these interactions is important to optimize driving performance, but the relevant physical phenomena are too complex to model from first principles. Therefore, we present an offline meta-learning algorithm to construct a rapidly-tunable model of residual dynamics and disturbances. We evaluate our method outdoors on different slopes with varying slippage and actuator degradation disturbances, and compare against an adaptive controller that does not use the VFM terrain features.

[ Paper ]

Thanks, Sorina!

Corvus Robotics, a provider of autonomous inventory management systems, announced an updated version of its Corvus One system that brings, for the first time, the ability to fly its drone-powered system in a lights-out distribution center without any added infrastructure like reflectors, stickers, or beacons.

With obstacle detection at its core, the light-weight drone safely flies at walking speed without disrupting workflow or blocking aisles and can preventatively ascend to avoid collisions with people, forklifts, or robots, if necessary. Its advanced barcode scanning can read any barcode symbology in any orientation placed anywhere on the front of cartons or pallets.

[ Corvus Robotics ]

Thanks, Jackie!

The first public walking demo of a new humanoid from Under Control Robotics.

[ Under Control Robotics ]

The ability to accurately and rapidly identify key physiological signatures of injury – such as hemorrhage and airway injuries – proved key to success in the DARPA Triage Challenge Event 1. DART took the top spot in the Systems competition, while Coordinated Robotics topped the leaderboard in the Virtual competition and pulled off the win in the Data competition. All qualified teams are eligible for prizes in the Final Event. These self-funded teams won between $60,000 - $120,000 each for their first-place finishes.

[ DARPA ]

The body structure of an anatomically correct tendon-driven musculoskeletal humanoid is complex. We focused on reciprocal innervation in the human nervous system, and then implemented antagonist inhibition control (AIC) based on the reflex. To verify its effectiveness, we applied AIC to the upper limb of the tendon-driven musculoskeletal humanoid, Kengoro, and succeeded in dangling for 14 minutes and doing pull-ups.

That is also how I do pull-ups.

[ Jouhou System Kougaku Laboratory, University of Tokyo ]

Thanks, Kento!

On June 5, 2024 Digit completed it’s first day of work for GXO Logistics, Inc. as part of regular operations. This is the result of a multi-year agreement between GXO and Agility Robotics to begin deploying Digit in GXO’s logistics operations. This agreement, which follows a proof-of-concept pilot in late 2023, is both the industry’s first formal commercial deployment of humanoid robots and first Robots-as-a-Service (RaaS) deployment of humanoid robots.

[ Agility Robotics ]

Although there is a growing demand for cooking behaviours as one of the expected tasks for robots, a series of cooking behaviours based on new recipe descriptions by robots in the real world has not yet been realised. In this study, we propose a robot system that integrates real-world executable robot cooking behaviour planning using the Large Language Model (LLM) and classical planning of PDDL descriptions, and food ingredient state recognition learning from a small number of data using the Vision-Language model (VLM).

[ JSK Robotics Laboratory, University of Tokyo GitHub ]

Thanks, Naoaki!

This paper introduces a novel approach to interactive robots by leveraging the form-factor of cards to create thin robots equipped with vibrational capabilities for locomotion and haptic feedback. The system is composed of flat-shaped robots with on-device sensing and wireless control, which offer lightweight portability and scalability. Applications include augmented card playing, educational tools, and assistive technology, which showcase CARDinality’s versatility in tangible interaction.

[ AxLab Actuated Experience Lab, University of Chicago ]

Azi reacts in full AI to the scripted skit it did with Ameca.

Azi uses 32 actuators, with 27 to control its silicone face, and 5 for the neck. It uses GPT-4o with a customisable personality.

[ Engineered Arts ]

We are testing a system that includes robots, structural building blocks, and smart algorithms to build large-scale structures for future deep space exploration. In this video, autonomous robots worked as a team to transport material in a mock rail system and simulate a build of a tower at our Roverscape.

[ NASA Ames Research Center ]

In the summer of 2024 HEBI’s intern Aditya Nair worked to add new use-case demos, and improve quality and consistency of the existing demos for our robotic arms! In this video you can see teach and report, augmented reality, gravity compensation, and impedance control gimbal for our robotic arms.

[ HEBI Robotics ]

This video showcases cutting-edge innovations and robotic demonstrations from the Reconfigurable Robotics Lab (RRL) at EPFL. As we are closing the semester, this event brings together the exciting progress and breakthroughs made by our researchers and students over the past months. In this video, you’ll experience a collection of exciting demonstrations, featuring the latest in reconfigurable, soft, and modular robotics, aimed at tackling real-world challenges.

[ EPFL Reconfigurable Robotics Lab ]

Humanoid robot companies are promising that humanoids will fast become our friends, colleagues, employees, and the backbone of our workforce. But how close are we to this reality? What are the key costs associated with operating a humanoid? Can companies deploy them profitably? Will humanoids take our jobs, and if so, what should we be doing to prepare?

[ Human Robot Interaction Podcast ]

According to Web of Science, there have been 1,147,069 publications from 2003 to 2023 that fell under their category of “Computer Science, Artificial Intelligence.” During the same time period, 217,507 publications fell under their “Robotics” category, about 1/5th of the volume. On top of that, Canada’s published Science, Technology, and Innovation Priorities has AI at the top of the “Technology Advanced Canada” list, but robotics is not even listed. AI has also engaged the public’s imagination more so than robotics with “AI” dominating Google Search trends compared to “robotics.” This has us questioning: “Is AI Skyrocketing while Robotics Inches Forward?”

[ Ingenuity Labs RAIS2024 Robotics Debate ]

Video Friday: Quadruped Ladder Climbing



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH
Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

Not even ladders can keep you safe from quadruped robots anymore.

[ ETH Zürich Robot Systems Lab ]

Introducing Azi (right), the new desktop robot from Engineered Arts Ltd. Azi and Ameca are having a little chat, demonstrating their wide range of expressive capabilities. Engineered Arts desktop robots feature 32 actuators, 27 for facial control alone, and 5 for the neck. They include AI conversational ability including GPT-4o support which makes them great robotic companions.

[ Engineered Arts ]

Quadruped robots that individual researchers can build by themselves are crucial for expanding the scope of research due to their high scalability and customizability. In this study, we develop a metal quadruped robot MEVIUS, that can be constructed and assembled using only materials ordered through e-commerce. We have considered the minimum set of components required for a quadruped robot, employing metal machining, sheet metal welding, and off-the-shelf components only.

[ MEVIUS from JSK Robotics Laboratory ]

Thanks Kento!

Avian perching maneuvers are one of the most frequent and agile flight scenarios, where highly optimized flight trajectories, produced by rapid wing and tail morphing that generate high angular rates and accelerations, reduce kinetic energy at impact. Here, we use optimal control methods on an avian-inspired drone with morphing wing and tail to test a recent hypothesis derived from perching maneuver experiments of Harris’ hawks that birds minimize the distance flown at high angles of attack to dissipate kinetic energy before impact.

[ EPFL Laboratory of Intelligent Systems ]

The earliest signs of bearing failures are inaudible to you, but not to Spot . Introducing acoustic vibration sensing—Automate ultrasonic inspections of rotating equipment to keep your factory humming.

The only thing I want to know is whether Spot is programmed to actually do that cute little tilt when using its acoustic sensors.

[ Boston Dynamics ]

Hear from Jonathan Hurst, our co-founder and Chief Robot Officer, why legs are ideally suited for Digit’s work.

[ Agility Robotics ]

I don’t think “IP67” really does this justice.

[ ANYbotics ]

This paper presents a teleportation system with floating robotic arms that traverse parallel cables to perform long-distance manipulation. The system benefits from the cable-based infrastructure, which is easy to set up and cost-effective with expandable workspace range.

[ EPFL ]

It seems to be just renderings for now, but here’s the next version of Fourier’s humanoid.

[ Fourier ]

Happy Oktoberfest from Dino Robotics!

[ Dino Robotics ]

This paper introduces a learning-based low-level controller for quadcopters, which adaptively controls quadcopters with significant variations in mass, size, and actuator capabilities. Our approach leverages a combination of imitation learning and reinforcement learning, creating a fast-adapting and general control framework for quadcopters that eliminates the need for precise model estimation or manual tuning.

[ HiPeR Lab ]

Parkour poses a significant challenge for legged robots, requiring navigation through complex environments with agility and precision based on limited sensory inputs. In this work, we introduce a novel method for training end-to-end visual policies, from depth pixels to robot control commands, to achieve agile and safe quadruped locomotion.

[ SoloParkour ]

Video Friday: Zipline Delivers



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

Zipline has (finally) posted some real live footage of its new Platform 2 drone, and while it’s just as weird looking as before, it seems to actually work really well.

[ Zipline ]

I appreciate Disney Research’s insistence on always eventually asking, “okay, but can we get this to work on a real robot in the real world?”

[ Paper from ETH Zurich and Disney Research [PDF] ]

In this video, we showcase our humanoid robot, Nadia, being remotely controlled for boxing training using a simple VR motion capture setup. A remote user takes charge of Nadia’s movements, demonstrating the power of our advanced teleoperation system. Watch as Nadia performs precise boxing moves, highlighting the potential for humanoid robots in dynamic, real-world tasks.

[ IHMC ]

Guide dogs are expensive to train and maintain—if available at all. Because of these limiting factors, relatively few blind people use them. Computer science assistant professor Donghyun Kim and Ph.D candidate Hochul Hwang are hoping to change that with the help of UMass database analyst Gail Gunn and her guide dog, Brawny.

[ University of Massachusetts, Amherst ]

Thanks Julia!

The current paradigm for motion planning generates solutions from scratch for every new problem, which consumes significant amounts of time and computational resources. Our approach builds a large number of complex scenes in simulation, collects expert data from a motion planner, then distills it into a reactive generalist policy. We then combine this with lightweight optimization to obtain a safe path for real world deployment.

[ Neural MP ]

A nice mix of NAO and AI for embodied teaching.

[ Aldebaran ]

When retail and logistics giant Otto Group set out to strengthen its operational efficiency and safety, it turned to robotics and automation. The Otto Group has become the first company in Europe to deploy the mobile case handling robot Stretch, which unloads floor-loaded trailers and containers.

[ Boston Dynamics ]

From groceries to last-minute treats, Wing is here to make sure deliveries arrive quickly and safely. Our latest aircraft design features a larger, more standardized box and can carry a higher payload which came directly from customer and partner feedback.

[ Wing ]

It’s the jacket that gets me.

[ Devanthro ]

In this video, we introduce Rotograb, a robotic hand that merges the dexterity of human hands with the strength and efficiency of industrial grippers. Rotograb features a new rotating thumb mechanism, allowing for precision in-hand manipulation and power grasps while being adaptable. The robotic hand was developed by students during “Real World Robotics”, a master course by the Soft Robotics Lab at ETH Zurich.

[ ETH Zurich ]

A small scene where Rémi, our distinguished professor, is teaching chess to the person remotely operating Reachy! The grippers allow for easy and precise handling of chess pieces, even the small ones! The robot shown in this video is the Beta version of Reachy 2, our new robot coming very soon!

[ Pollen ]

Enhancing the adaptability and versatility of unmanned micro aerial vehicles (MAVs) is crucial for expanding their application range. In this article, we present a bimodal reconfigurable robot capable of operating in both regular quadcopter flight mode and a unique revolving flight mode, which allows independent control of the vehicle’s position and roll-pitch attitude.

[ City University Hong Kong ]

The Parallel Continuum Manipulator (PACOMA) is an advanced robotic system designed to replace traditional robotic arms in space missions, such as exploration, in-orbit servicing, and docking. Its design emphasizes robustness against misalignments and impacts, high precision and payload capacity, and sufficient mechanical damping for stable, controlled movements.

[ DFKI Robotics Innovation Center ]

Even the FPV pros from Team BlackSheep do, very occasionally, crash.

[ Team BlackSheep ]

This is a one-hour uninterrupted video of a robot cleaning bathrooms in real time. I’m not sure if it’s practical, but I am sure that it’s impressive, honestly.

[ Somatic ]

Video Friday: Jumping Robot Leg, Walking Robot Table



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

Researchers at the Max Planck Institute for Intelligent Systems and ETH Zurich have developed a robotic leg with artificial muscles. Inspired by living creatures, it jumps across different terrains in an agile and energy-efficient manner.

[ Nature ] via [ MPI ]

Thanks, Toshi!

ETH Zurich researchers have now developed a fast robotic printing process for earth-based materials that does not require cement. In what is known as “impact printing,” a robot shoots material from above, gradually building a wall. On impact, the parts bond together, and very minimal additives are required.

[ ETH Zurich ]

How could you not be excited to see this happen for real?

[ arXiv paper ]

Can we all agree that sanding, grinding, deburring, and polishing tasks are really best done by robots, for the most part?

[ Cohesive Robotics ]

Thanks, David!

Using doors is a longstanding challenge in robotics and is of significant practical interest in giving robots greater access to human-centric spaces. The task is challenging due to the need for online adaptation to varying door properties and precise control in manipulating the door panel and navigating through the confined doorway. To address this, we propose a learning-based controller for a legged manipulator to open and traverse through doors.

[ arXiv paper ]

Isaac is the first robot assistant that’s built for the home. And we’re shipping it in fall of 2025.

Fall of 2025 is a long enough time from now that I’m not even going to speculate about it.

[ Weave Robotics ]

By patterning liquid metal paste onto a soft sheet of silicone or acrylic foam tape, we developed stretchable versions of conventional rigid circuits (like Arduinos). Our soft circuits can be stretched to over 300% strain (over 4x their length) and are integrated into active soft robots.

[ Science Robotics ] via [ Yale ]

NASA’s Curiosity rover is exploring a scientifically exciting area on Mars, but communicating with the mission team on Earth has recently been a challenge due to both the current season and the surrounding terrain. In this Mars Report, Curiosity engineer Reidar Larsen takes you inside the uplink room where the team talks to the rover.

[ NASA ]

I love this and want to burn it with fire.

[ Carpentopod ]

Very often, people ask us what Reachy 2 is capable of, which is why we’re showing you the manipulation possibilities (through teleoperation) of our technology. The robot shown in this video is the Beta version of Reachy 2, our new robot coming very soon!

[ Pollen Robotics ]

The Scalable Autonomous Robots (ScalAR) Lab is an interdisciplinary lab focused on fundamental research problems in robotics that lie at the intersection of robotics, nonlinear dynamical systems theory, and uncertainty.

[ ScalAR Lab ]

Astorino is a 6-axis educational robot created for practical and affordable teaching of robotics in schools and beyond. It has been created with 3D printing, so it allows for experimentation and the possible addition of parts. With its design and programming, it replicates the actions of #KawasakiRobotics industrial robots, giving students the necessary skills for future work.

[ Astorino ]

I guess fish-fillet-shaping robots need to exist because otherwise customers will freak out if all their fish fillets are not identical, or something?

[ Flexiv ]

Watch the second episode of the ExoMars Rosalind Franklin rover mission—Europe’s ambitious exploration journey to search for past and present signs of life on Mars. The rover will dig, collect, and investigate the chemical composition of material collected by a drill. Rosalind Franklin will be the first rover to reach a depth of up to two meters below the surface, acquiring samples that have been protected from surface radiation and extreme temperatures.

[ ESA ]

Video Friday: HAND to Take on Robotic Hands



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

The National Science Foundation Human AugmentatioN via Dexterity Engineering Research Center (HAND ERC) was announced in August 2024. Funded for up to 10 years and $52 million, the HAND ERC is led by Northwestern University, with core members Texas A&M, Florida A&M, Carnegie Mellon, and MIT, and support from Wisconsin-Madison, Syracuse, and an innovation ecosystem consisting of companies, national labs, and civic and advocacy organizations. HAND will develop versatile, easy-to-use dexterous robot end effectors (hands).

[ HAND ]

The Environmental Robotics Lab at ETH Zurich, in partnership with Wilderness International (and some help from DJI and Audi), is using drones to sample DNA from the tops of trees in the Peruvian rainforest. Somehow, the treetops are where 60 to 90 percent of biodiversity is found, and these drones can help researchers determine what the heck is going on up there.

[ ERL ]

Thanks, Steffen!

1X introduces NEO Beta, “the pre-production build of our home humanoid.”

“Our priority is safety,” said Bernt Børnich, CEO at 1X. “Safety is the cornerstone that allows us to confidently introduce NEO Beta into homes, where it will gather essential feedback and demonstrate its capabilities in real-world settings. This year, we are deploying a limited number of NEO units in selected homes for research and development purposes. Doing so means we are taking another step toward achieving our mission.”

[ 1X ]

We love MangDang’s fun and affordable approach to robotics with Mini Pupper. The next generation of the little legged robot has just launched on Kickstarter, featuring new and updated robots that make it easy to explore embodied AI.

The Kickstarter is already fully funded after just a day or two, but there are still plenty of robots up for grabs.

[ Kickstarter ]

Quadrupeds in space can use their legs to reorient themselves. Or, if you throw one off a roof, it can learn to land on its feet.

To be presented at CoRL 2024.

[ ARL ]

HEBI Robotics, which apparently was once headquartered inside a Pittsburgh public bus, has imbued a table with actuators and a mind of its own.

[ HEBI Robotics ]

Carcinization is a concept in evolutionary biology where a crustacean that isn’t a crab eventually becomes a crab. So why not do the same thing with robots? Crab robots solve all problems!

[ KAIST ]

Waymo is smart, but also humans are really, really dumb sometimes.

[ Waymo ]

The Robotics Department of the University of Michigan created an interactive community art project. The group that led the creation believed that while roboticists typically take on critical and impactful problems in transportation, medicine, mobility, logistics, and manufacturing, there are many opportunities to find play and amusement. The final piece is a grid of art boxes, produced by different members of our robotics community, which offer an eight-inch-square view into their own work with robotics.

[ Michigan Robotics ]

I appreciate that UBTECH’s humanoid is doing an actual job, but why would you use a humanoid for this?

[ UBTECH ]

I’m sure most actuators go through some form of life-cycle testing. But if you really want to test an electric motor, put it into a BattleBot and see what happens.

[ Hardcore Robotics ]

Yes, but have you tried fighting a BattleBot?

[ AgileX ]

In this video, we present collaboration aerial grasping and transportation using multiple quadrotors with cable-suspended payloads. Grasping using a suspended gripper requires accurate tracking of the electromagnet to ensure a successful grasp while switching between different slack and taut modes. In this work, we grasp the payload using a hybrid control approach that switches between a quadrotor position control and a payload position control based on cable slackness. Finally, we use two quadrotors with suspended electromagnet systems to collaboratively grasp and pick up a larger payload for transportation.

[ Hybrid Robotics ]

I had not realized that the floretizing of broccoli was so violent.

[ Oxipital ]

While the RoboCup was held over a month ago, we still wanted to make a small summary of our results, the most memorable moments, and of course an homage to everyone who is involved with the B-Human team: the team members, the sponsors, and the fans at home. Thank you so much for making B-Human the team it is!

[ B-Human ]

Video Friday: Disney Robot Dance



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

I think it’s time for us all to admit that some of the most interesting bipedal and humanoid research is being done by Disney.

[ Research Paper from ETH Zurich and Disney Research]

Over the past few months, Unitree G1 robot has been upgraded into a mass production version, with stronger performance, ultimate appearance, and being more in line with mass production requirements.

[ Unitree ]

This robot is from Kinisi Robotics, which was founded by Brennand Pierce, who also founded Bear Robotics. You can’t really tell from this video, but check out the website because the reach this robot has is bonkers.

Kinisi Robotics is on a mission to democratize access to advanced robotics with our latest innovation—a low-cost, dual-arm robot designed for warehouses, factories, and supermarkets. What sets our robot apart is its integration of LLM technology, enabling it to learn from demonstrations and perform complex tasks with minimal setup. Leveraging Brennand’s extensive experience in scaling robotic solutions, we’re able to produce this robot for under $20k, making it a game-changer in the industry.

[ Kinisi Robotics ]

Thanks Bren!

Finally, something that Atlas does that I am also physically capable of doing. In theory.

Okay, never mind. I don’t have those hips.

[ Boston Dynamics ]

Researchers in the Department of Mechanical Engineering at Carnegie Mellon University have created the first legged robot of its size to run, turn, push loads, and climb miniature stairs.

They say it can “run,” but I’m skeptical that there’s a flight phase unless someone sneezes nearby.

[ Carnegie Mellon University ]

The lights are cool and all, but it’s the pulsing soft skin that’s squigging me out.

[ Paper, Robotics Reports Vol.2 ]

Roofing is a difficult and dangerous enough job that it would be great if robots could take it over. It’ll be a challenge though.

[ Renovate Robotics ] via [ TechCrunch ]

Kento Kawaharazuka from JSK Robotics Laboratory at the University of Tokyo wrote in to share this paper, just accepted at RA-L, which (among other things) shows a robot using its flexible hands to identify objects through random finger motion.

[ Paper accepted by IEEE Robotics and Automation Letters ]

Thanks Kento!

It’s one thing to make robots that are reliable, and it’s another to make robots that are reliable and repairable by the end user. I don’t think iRobot gets enough credit for this.

[ iRobot ]

I like competitions where they say, “just relax and forget about the competition and show us what you can do.”

[ MBZIRC Maritime Grand Challenge ]

I kid you not, this used to be my job.

[ RoboHike ]

Video Friday: Silly Robot Dog Jump



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

The title of this video is “Silly Robot Dog Jump” and that’s probably more than you need to know.

[ Deep Robotics ]

It’ll be great when robots are reliably autonomous, but until they get there, collaborative capabilities are a must.

[ Robust AI ]

I am so INCREDIBLY EXCITED for this.

[ IIT Instituto Italiano di Tecnologia ]

In this 3 minutes long one-take video, the LimX Dynamics CL-1 takes on the challenge of continuous heavy objects loading among shelves in a simulated warehouse, showcasing the advantages of the general-purpose form factor of humanoid robots.

[ LimX Dynamics ]

Birds, bats and many insects can tuck their wings against their bodies when at rest and deploy them to power flight. Whereas birds and bats use well-developed pectoral and wing muscles, how insects control their wing deployment and retraction remains unclear because this varies among insect species. Here we demonstrate that rhinoceros beetles can effortlessly deploy their hindwings without necessitating muscular activity. We validated the hypothesis using a flapping microrobot that passively deployed its wings for stable, controlled flight and retracted them neatly upon landing, demonstrating a simple, yet effective, approach to the design of insect-like flying micromachines.

[ Nature ]

Agility Robotics’ CTO, Pras Velagapudi, talks about data collection, and specifically about the different kinds we collect from our real-world robot deployments and generally what that data is used for.

[ Agility Robotics ]

Robots that try really hard but are bad at things are utterly charming.

[ University of Tokyo JSK Lab ]

The DARPA Triage Challenge unsurprisingly has a bunch of robots in it.

[ DARPA ]

The Cobalt security robot has been around for a while, but I have to say, the design really holds up—it’s a good looking robot.

[ Cobalt AI ]

All robots that enter elevators should be programmed to gently sway back and forth to the elevator music. Even if there’s no elevator music.

[ Somatic ]

ABB Robotics and the Texas Children’s Hospital have developed a groundbreaking lab automation solution using ABB’s YuMi® cobot to transfer fruit flies (Drosophila melanogaster) used in the study for developing new drugs for neurological conditions such as Alzheimer’s, Huntington’s and Parkinson’s.

[ ABB ]

Extend Robotics are building embodied AI enabling highly flexible automation for real-world physical tasks. The system features intuitive immersive interface enabling tele-operation, supervision and training AI models.

[ Extend Robotics ]

The recorded livestream of RSS 2024 is now online, in case you missed anything.

[ RSS 2024 ]

Video Friday: The Secrets of Shadow Robot’s New Hand



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

At ICRA 2024, in Tokyo last May, we sat down with the director of Shadow Robot, Rich Walker, to talk about the journey toward developing its newest model. Designed for reinforcement learning, the hand is extremely rugged, has three fingers that act like thumbs, and has fingertips that are highly sensitive to touch.

[ IEEE Spectrum ]

Food Angel is a food delivery robot to help with the problems of food insecurity and homelessness. Utilizing autonomous wheeled robots for this application may seem to be a good approach, especially with a number of successful commercial robotic delivery services. However, besides technical considerations such as range, payload, operation time, autonomy, etc., there are a number of important aspects that still need to be investigated, such as how the general public and the receiving end may feel about using robots for such applications, or human-robot interaction issues such as how to communicate the intent of the robot to the homeless.

[ RoMeLa ]

The UKRI FLF team RoboHike of UCL Computer Science of the Robot Perception and Learning lab with Forestry England demonstrate the ANYmal robot to help preserve the cultural heritage of an historic mine in the Forest of Dean, Gloucestershire, UK.

This clip is from a reboot of the British TV show “Time Team.” If you’re not already a fan of “Time Team,” let me just say that it is one of the greatest retro reality TV shows ever made, where actual archaeologists wander around the United Kingdom and dig stuff up. If they can find anything. Which they often can’t. And also it has Tony Robinson (from “Blackadder”), who runs everywhere for some reason. Go to Time Team Classics on YouTube for 70+ archived episodes.

[ UCL RPL ]

UBTECH humanoid robot Walker S Lite is working in Zeekr’s intelligent factory to complete handling tasks at the loading workstation for 21 consecutive days, and assist its employees with logistics work.

[ UBTECH ]

Current visual navigation systems often treat the environment as static, lacking the ability to adaptively interact with obstacles. This limitation leads to navigation failure when encountering unavoidable obstructions. In response, we introduce IN-Sight, a novel approach to self-supervised path planning, enabling more effective navigation strategies through interaction with obstacles.

[ ETH Zurich paper / IROS 2024 ]

When working on autonomous cars, sometimes it’s best to start small.

[ University of Pennsylvania ]

MIT MechE researchers introduce an approach called SimPLE (Simulation to Pick Localize and placE), a method of precise kitting, or pick and place, in which a robot learns to pick, regrasp, and place objects using the object’s computer-aided design (CAD) model, and all without any prior experience or encounters with the specific objects.

[ MIT ]

Staff, students (and quadruped robots!) from UCL Computer Science wish the Great Britain athletes the best of luck this summer in the Olympic Games & Paralympics.

[ UCL Robotics Institute ]

Walking in tall grass can be hard for robots, because they can’t see the ground that they’re actually stepping on. Here’s a technique to solve that, published in Robotics and Automation Letters last year.

[ ETH Zurich Robotic Systems Lab ]

There is no such thing as excess batter on a corn dog, and there is also no such thing as a defective donut. And apparently, making Kool-Aid drink pouches is harder than it looks.

[ Oxipital AI ]

Unitree has open-sourced its software to teleoperate humanoids in VR for training-data collection.

[ Unitree / GitHub ]

Nothing more satisfying than seeing point-cloud segments wiggle themselves into place, and CSIRO’s Wildcat SLAM does this better than anyone.

[ IEEE Transactions on Robotics ]

A lecture by Mentee Robotics CEO Lior Wolf, on Mentee’s AI approach.

[ Mentee Robotics ]

Video Friday: UC Berkeley’s Little Humanoid



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UNITED ARAB EMIRATES
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

We introduce Berkeley Humanoid, a reliable and low-cost mid-scale humanoid research platform for learning-based control. Our lightweight, in-house-built robot is designed specifically for learning algorithms with low simulation complexity, anthropomorphic motion, and high reliability against falls. Capable of omnidirectional locomotion and withstanding large perturbations with a compact setup, our system aims for scalable, sim-to-real deployment of learning-based humanoid systems.

[ Berkeley Humanoid ]

This article presents Ray, a new type of audio-animatronic robot head. All the mechanical structure of the robot is built in one step by 3-D printing... This simple, lightweight structure and the separate tendon-based actuation system underneath allow for smooth, fast motions of the robot. We also develop an audio-driven motion generation module that automatically synthesizes natural and rhythmic motions of the head and mouth based on the given audio.

[ Paper ]

CSAIL researchers introduce a novel approach allowing robots to be trained in simulations of scanned home environments, paving the way for customized household automation accessible to anyone.

[ MIT News ]

Okay, sign me up for this.

[ Deep Robotics ]

NEURA Robotics is among the first joining the early access NVIDIA Humanoid Robot Developer Program.

This could be great, but there’s an awful lot of jump cuts in that video.

[ Neura ] via [ NVIDIA ]

I like that Unitree’s tagline in the video description here is “Let’s have fun together.”

Is that “please don’t do dumb stuff with our robots” at the end of the video new...?

[ Unitree ]

NVIDIA CEO Jensen Huang presented a major breakthrough on Project GR00T with WIRED’s Lauren Goode at SIGGRAPH 2024. In a two-minute demonstration video, NVIDIA explained a systematic approach they discovered to scale up robot data, addressing one of the most challenging issues in robotics.

[ Nvidia ]

In this research, we investigated the innovative use of a manipulator as a tail in quadruped robots to augment their physical capabilities. Previous studies have primarily focused on enhancing various abilities by attaching robotic tails that function solely as tails on quadruped robots. While these tails improve the performance of the robots, they come with several disadvantages, such as increased overall weight and higher costs. To mitigate these limitations, we propose the use of a 6-DoF manipulator as a tail, allowing it to serve both as a tail and as a manipulator.

[ Paper ]

In this end-to-end demo, we showcase how MenteeBot transforms the shopping experience for individuals, particularly those using wheelchairs. Through discussions with a global retailer, MenteeBot has been designed to act as the ultimate shopping companion, offering a seamless, natural experience.

[ Menteebot ]

Nature Fresh Farms, based in Leamington, Ontario, is one of North America’s largest greenhouse farms growing high-quality organics, berries, peppers, tomatoes, and cucumbers. In 2022, Nature Fresh partnered with Four Growers, a FANUC Authorized System Integrator, to develop a robotic system equipped with AI to harvest tomatoes in the greenhouse environment.

[ FANUC ]

Contrary to what you may have been led to believe by several previous Video Fridays, WVUIRL’s open source rover is quite functional, most of the time.

[ WVUIRL ]

Honeybee Robotics, a Blue Origin company, is developing Lunar Utility Navigation with Advanced Remote Sensing and Autonomous Beaming for Energy Redistribution, also known as LUNARSABER. In July 2024, Honeybee Robotics captured LUNARSABER’s capabilities during a demonstration of a scaled prototype.

[ Honeybee Robotics ]

Bunker Mini is a compact tracked mobile robot specifically designed to tackle demanding off-road terrains.

[ AgileX ]

In this video we present results of our lab from the latest field deployments conducted in the scope of the Digiforest EU project, in Stein am Rhein, Switzerland. Digiforest brings together various partners working on aerial and legged robots, autonomous harvesters, and forestry decision-makers. The goal of the project is to enable autonomous robot navigation, exploration, and mapping, both below and above the canopy, to create a data pipeline that can support and enhance foresters’ decision-making systems.

[ ARL ]

Video Friday: Robot Baby With a Jet Pack



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

If the Italian Institute of Technology’s iRonCub3 looks this cool while learning to fly, just imagine how cool it will look when it actually takes off!

Hovering is in the works, but this is a really hard problem, which you can read more about in Daniele Pucci’s post on LinkedIn.

[ LinkedIn ]

Stanford Engineering and the Toyota Research Institute achieve the world’s first autonomous tandem drift. Leveraging the latest AI technology, Stanford Engineering and TRI are working to make driving safer for all. By automating a driving style used in motorsports called drifting—in which a driver deliberately spins the rear wheels to break traction—the teams have unlocked new possibilities for future safety systems.

[ TRI ]

Researchers at the Istituto Italiano di Tecnologia (Italian Institute of Technology) have demonstrated that under specific conditions, humans can treat robots as coauthors of the results of their actions. The condition that enables this phenomenon is a robot that behaves in a social, humanlike manner. Engaging in eye contact and participating in a common emotional experience, such as watching a movie, are key.

[ Science Robotics ]

If Aibo is not quite catlike enough for you, here you go.

[ Maicat ] via [ RobotStart ]

I’ve never been more excited for a sim-to-real gap to be bridged.

[ USC Viterbi ]

I’m sorry, but this looks exactly like a quadrotor sitting on a test stand.

The 12-pound Quad-Biplane combines four rotors and two wings without any control surfaces. The aircraft takes off like a conventional quadcopter and transitions to a more-efficient horizontal cruise flight, similar to that of a biplane. This combines the simplicity of a quadrotor design, providing vertical flight capability, with the cruise efficiency of a fixed-wing aircraft. The rotors are responsible for aircraft control both in vertical and forward cruise flight regimes.

[ AVFL ]

Tensegrity robots are so weird, and I so want them to be useful.

[ Suzumori Endo Lab ]

Top-performing robots need all the help they can get.

[ Team B-Human ]

And now: a beetle nearly hit by an autonomous robot.

[ WVUIRL ]

Humans possess a remarkable ability to react to unpredictable perturbations through immediate mechanical responses, which harness the visco-elastic properties of muscles to maintain balance. Inspired by this behavior, we propose a novel design of a robotic leg utilizing fiber-jammed structures as passive compliant mechanisms to achieve variable joint stiffness and damping.

[ Paper ]

I don’t know what this piece of furniture is, but your cats will love it.

[ ABB ]

This video shows a dexterous avatar humanoid robot with VR teleoperation, hand tracking, and speech recognition to achieve highly dexterous mobile manipulation. Extend Robotics is developing a dexterous remote-operation interface to enable data collection for embodied AI and humanoid robots.

[ Extend Robotics ]

I never really thought about this, but wind turbine blades are hollow inside and need to be inspected sometimes, which is really one of those jobs where you’d much rather have a robot do it.

[ Flyability ]

Here’s a full, uncut drone-delivery mission, including a package pickup from our AutoLoader—a simple, nonpowered mechanical device that allows retail partners to utilize drone delivery with existing curbside-pickup workflows.

[ Wing ]

Daniel Simu and his acrobatic robot competed in “America’s Got Talent,” and even though his robot did a very robot thing by breaking itself immediately beforehand, the performance went really well.

[ Acrobot ]

A tour of the Creative Robotics Mini Exhibition at the Creative Computing Institute, University of the Arts London.

[ UAL ]

Thanks, Hooman!

Zoox CEO Aicha Evans and cofounder and chief technology officer Jesse Levinson hosted a LinkedIn Live last week to reflect on the past decade of building Zoox and their predictions for the next 10 years of the autonomous-vehicle industry.

[ Zoox ]

Video Friday: Robot Crash-Perches, Hugs Tree



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

Perching with winged Unmanned Aerial Vehicles has often been solved by means of complex control or intricate appendages. Here, we present a method that relies on passive wing morphing for crash-landing on trees and other types of vertical poles. Inspired by the adaptability of animals’ and bats’ limbs in gripping and holding onto trees, we design dual-purpose wings that enable both aerial gliding and perching on poles.

[ Nature Communications Engineering ]

Pretty impressive to have low enough latency in controlling your robot’s hardware that it can play ping pong, although it makes it impossible to tell whether the robot or the human is the one that’s actually bad at the game.

[ IHMC ]

How to be a good robot when boarding an elevator.

[ NAVER ]

Have you ever wondered how insects are able to go so far beyond their home and still find their way? The answer to this question is not only relevant to biology but also to making the AI for tiny, autonomous robots. We felt inspired by biological findings on how ants visually recognize their environment and combine it with counting their steps in order to get safely back home.

[ Science Robotics ]

Team RoMeLa Practice with ARTEMIS humanoid robots, featuring Tsinghua Hephaestus (Booster Alpha). Fully autonomous humanoid robot soccer match with the official goal of beating the human WorldCup Champions by the year 2050.

[ RoMeLa ]

Triangle is the most stable shape, right?

[ WVU IRL ]

We propose RialTo, a new system for robustifying real-world imitation learning policies via reinforcement learning in “digital twin” simulation environments constructed on the fly from small amounts of real-world data.

[ MIT CSAIL ]

There is absolutely no reason to watch this entire video, but Moley Robotics is still working on that robotic kitchen of theirs.

I will once again point out that the hardest part of cooking (for me, anyway) is the prep and the cleanup, and this robot still needs you to do all that.

[ Moley ]

B-Human has so far won 10 titles at the RoboCup SPL tournament. Can we make it 11 this year? Our RoboCup starts off with a banger game against HTWK Robots form Leipzig!

[ Team B-Human ]

AMBIDEX is a dual-armed robot with an innovative mechanism developed for safe coexistence with humans. Based on an innovative cable structure, it is designed to be both strong and stable.

[ NAVER ]

As NASA’s Perseverance rover prepares to ascend to the rim of Jezero Crater, its team is investigating a rock unlike any that they’ve seen so far on Mars. Deputy project scientist Katie Stack Morgan explains why this rock, found in an ancient channel that funneled water into the crater, could be among the oldest that Perseverance has investigated—or the youngest.

[ NASA ]

We present a novel approach for enhancing human-robot collaboration using physical interactions for real-time error correction of large language model (LLM) parameterized commands.

[ Figueroa Robotics Lab ]

Husky Observer was recently used to autonomously inspect solar panels at a large solar panel farm. As part of its mission, the robot navigated rows of solar panels, stopping to inspect areas with its integrated thermal camera. Images were taken by the robot and enhanced to detect potential “hot spots” in the panels.

[ Clearpath Robotics ]

Most of the time, robotic workcells contain just one robot, so it’s cool to see a pair of them collaborating on tasks.

[ Leverage Robotics ]

Thanks, Roman!

Meet Hydrus, the autonomous underwater drone revolutionising underwater data collection by eliminating the barriers to its entry. Hydrus ensures that even users with limited resources can execute precise and regular subsea missions to meet their data requirements.

[ Advanced Navigation ]

Those adorable Disney robots have finally made their way into a paper.

[ RSS 2024 ]

❌
❌