Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Meet Boardwalk Robotics’ Addition to the Humanoid Workforce



Boardwalk Robotics is announcing its entry into the increasingly crowded commercial humanoid(ish) space with Alex, a “workforce transformation” humanoid upper torso designed to work in manufacturing, logistics, and maintenance.

Before we get into Alex, let me take just a minute here to straighten out how Boardwalk Robotics is related to IHMC, the Institute for Human Machine Cognition in Pensacola, Fla. IHMC is, I think it’s fair to say, somewhat legendary when it comes to bipedal robotics—its DARPA Robotics Challenge team took second place in the final event (using a Boston Dynamics DRC Atlas), and when NASA needed someone to teach the agency’s Valkyrie humanoid to walk better, they sent it to IHMC.

Boardwalk, which was founded in 2017, has been a commercial partner with IHMC when it comes to the actual building of robots. The most visible example of this to date has been IHMC’s Nadia humanoid, a research platform which Boardwalk collaborated on and built. There’s obviously a lot of crossover between IHMC and Boardwalk in terms of institutional knowledge and experience, but Alex is a commercial robot developed entirely in-house by Boardwalk.

“We’ve used Nadia to learn a lot in the realm of dynamic locomotion research, and we’re taking all that and sticking it into a manipulation platform that’s ready for commercial work,” says Brandon Shrewsbury, Boardwalk Robotics’ CTO. “With Alex, we’re focusing on the manipulation side first, getting that well established. And then picking the mobility to match the task.”

The first thing you’ll notice about Alex is that it doesn’t have legs, at least for now. Boardwalk’s theory is that for a humanoid to be practical and cost effective in the near term, legs aren’t necessary, and that there are many tasks that offer a good return on investment where a stationary pedestal or a glorified autonomous mobile robotic base would be totally fine.

“There are going to be some problem sets that require legs, but there are many problem sets that don’t,” says Robert Griffin, a technical advisor at Boardwalk. “And there aren’t very many problem sets that don’t require halfway decent manipulation capabilities. So if we can design the manipulation well from the beginning, then we won’t have to depend on legs for making a robot that’s functionally useful.”

It certainly helps that Boardwalk isn’t at all worried about developing legs: “Every time we bring up a new humanoid, it’s something like twice as fast as the previous time,” Griffin says. This will be the eighth humanoid that IHMC has been involved in bringing up—I’d tell you more about all eight of those humanoids, but some of them are so secret that even I don’t know anything about them. Legs are definitely on the road map, but they’re not done yet, and IHMC will have a hand in their development to speed things along: It turns out that already having access to a functional (top of the line, really) locomotion stack is a big head start.

An annotated image showing a black humanoid robot along with statistics including 19 degrees of freedom and 10kg payload. Alex’s actuators are all designed in-house, and the next version will feature new grippers that allow for quicker tool changes.Boardwalk Robotics

While the humanoid space is wide open right now and competition isn’t really an issue, looking ahead, Boardwalk sees safety as one of its primary differentiators since it’s not starting out with legs, says Shrewsbury. “For a full humanoid, there’s no way to make that completely safe. If it falls, it’s going to face-plant.” By keeping Alex on a stable base, it can work closer to humans and potentially move its arms much faster while also preserving a dynamic safety zone.

An abstract image showing the back of a humanoid robot looking into bright lights. Alex is available for researchers to purchase immediately.Boardwalk Robotics

Despite its upbringing in research, Alex is not intended to be a research robot. You can buy it for research purposes, if you want, but Boardwalk will be selling Alex as a commercial robot. At the moment, Boardwalk is conducting pilot programs with Alex where they’re working in partnership with select customers, with the eventual goal of transitioning to a service model. The first few sectors that Boardwalk is targeting include logistics (because, of course) and food processing, although as Boardwalk CEO Michael Morin tells us, one of the very first pilots is (appropriately enough) in aviation.

Morin, who helped to commercialize Barrett Technologies’ WAM Arm before spending some time at Vicarious Surgical as that company went public, joined Boardwalk to help them turn good engineering into a good product, which is arguably the hardest part of making useful robots (besides all the other hardest parts). “A lot of these companies are just learning about humanoids for the first time,” says Morin. “That makes the customer journey longer. But we’re putting in the effort to educate them on how this could be implemented in their world.”

If you want an Alex of your very own, Boardwalk is currently selecting commercial partners for a few more pilots. And for researchers, the robot is available right now.

Video Friday: UC Berkeley’s Little Humanoid



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UNITED ARAB EMIRATES
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

We introduce Berkeley Humanoid, a reliable and low-cost mid-scale humanoid research platform for learning-based control. Our lightweight, in-house-built robot is designed specifically for learning algorithms with low simulation complexity, anthropomorphic motion, and high reliability against falls. Capable of omnidirectional locomotion and withstanding large perturbations with a compact setup, our system aims for scalable, sim-to-real deployment of learning-based humanoid systems.

[ Berkeley Humanoid ]

This article presents Ray, a new type of audio-animatronic robot head. All the mechanical structure of the robot is built in one step by 3-D printing... This simple, lightweight structure and the separate tendon-based actuation system underneath allow for smooth, fast motions of the robot. We also develop an audio-driven motion generation module that automatically synthesizes natural and rhythmic motions of the head and mouth based on the given audio.

[ Paper ]

CSAIL researchers introduce a novel approach allowing robots to be trained in simulations of scanned home environments, paving the way for customized household automation accessible to anyone.

[ MIT News ]

Okay, sign me up for this.

[ Deep Robotics ]

NEURA Robotics is among the first joining the early access NVIDIA Humanoid Robot Developer Program.

This could be great, but there’s an awful lot of jump cuts in that video.

[ Neura ] via [ NVIDIA ]

I like that Unitree’s tagline in the video description here is “Let’s have fun together.”

Is that “please don’t do dumb stuff with our robots” at the end of the video new...?

[ Unitree ]

NVIDIA CEO Jensen Huang presented a major breakthrough on Project GR00T with WIRED’s Lauren Goode at SIGGRAPH 2024. In a two-minute demonstration video, NVIDIA explained a systematic approach they discovered to scale up robot data, addressing one of the most challenging issues in robotics.

[ Nvidia ]

In this research, we investigated the innovative use of a manipulator as a tail in quadruped robots to augment their physical capabilities. Previous studies have primarily focused on enhancing various abilities by attaching robotic tails that function solely as tails on quadruped robots. While these tails improve the performance of the robots, they come with several disadvantages, such as increased overall weight and higher costs. To mitigate these limitations, we propose the use of a 6-DoF manipulator as a tail, allowing it to serve both as a tail and as a manipulator.

[ Paper ]

In this end-to-end demo, we showcase how MenteeBot transforms the shopping experience for individuals, particularly those using wheelchairs. Through discussions with a global retailer, MenteeBot has been designed to act as the ultimate shopping companion, offering a seamless, natural experience.

[ Menteebot ]

Nature Fresh Farms, based in Leamington, Ontario, is one of North America’s largest greenhouse farms growing high-quality organics, berries, peppers, tomatoes, and cucumbers. In 2022, Nature Fresh partnered with Four Growers, a FANUC Authorized System Integrator, to develop a robotic system equipped with AI to harvest tomatoes in the greenhouse environment.

[ FANUC ]

Contrary to what you may have been led to believe by several previous Video Fridays, WVUIRL’s open source rover is quite functional, most of the time.

[ WVUIRL ]

Honeybee Robotics, a Blue Origin company, is developing Lunar Utility Navigation with Advanced Remote Sensing and Autonomous Beaming for Energy Redistribution, also known as LUNARSABER. In July 2024, Honeybee Robotics captured LUNARSABER’s capabilities during a demonstration of a scaled prototype.

[ Honeybee Robotics ]

Bunker Mini is a compact tracked mobile robot specifically designed to tackle demanding off-road terrains.

[ AgileX ]

In this video we present results of our lab from the latest field deployments conducted in the scope of the Digiforest EU project, in Stein am Rhein, Switzerland. Digiforest brings together various partners working on aerial and legged robots, autonomous harvesters, and forestry decision-makers. The goal of the project is to enable autonomous robot navigation, exploration, and mapping, both below and above the canopy, to create a data pipeline that can support and enhance foresters’ decision-making systems.

[ ARL ]

Elephant Robotics’ Mercury Humanoid Robot Empowers Embodied AI Research



This is a sponsored article brought to you by Elephant Robotics.

Elephant Robotics has gone through years of research and development to accelerate its mission of bringing robots to millions of homes and a vision of “Enjoy Robots World”. From the collaborative industrial robots P-series and C-series, which have been on the drawing board since its establishment in 2016, to the lightweight desktop 6 DOF collaborative robot myCobot 280 in 2020, to the dual-armed, semi-humanoid robot myBuddy, which was launched in 2022, Elephant Robotics is launching 3-5 robots per year, and this year’s full-body humanoid robot, the Mercury series, promises to reshape the landscape of non-human workers, introducing intelligent robots like Mercury into research and education and even everyday home environments.

A Commitment to Practical Robotics

Elephant Robotics proudly introduces the Mercury Series, a suite of humanoid robots that not only push the boundaries of innovation but also embody a deep commitment to practical applications. Designed with the future of robotics in mind, the Mercury Series is poised to become the go-to choice for researchers and industry professionals seeking reliable, scalable, and robust solutions.


Elephant Robotics

The Genesis of Mercury Series: Bridging Vision With Practicality

From the outset, the Mercury Series has been envisioned as more than just a collection of advanced prototypes. It is a testament to Elephant Robotics’ dedication to creating humanoid robots that are not only groundbreaking in their capabilities but also practical for mass production and consistent, reliable use in real-world applications.

Mercury X1: Wheeled Humanoid Robot

The Mercury X1 is a versatile wheeled humanoid robot that combines advanced functionalities with mobility. Equipped with dual NVIDIA Jetson controllers, lidar, ultrasonic sensors, and an 8-hour battery life, the X1 is perfect for a wide range of applications, from exploratory studies to commercial tasks requiring mobility and adaptability.

Mercury B1: Dual-Arm Semi-Humanoid Robot

The Mercury B1 is a semi-humanoid robot tailored for sophisticated research. It features 17 degrees of freedom, dual robotic arms, a 9-inch touchscreen, a NVIDIA Xavier control chip, and an integrated 3D camera. The B1 excels in machine vision and VR-assisted teleoperation, and its AI voice interaction and LLM integration mark significant advancements in human-robot communication.

These two advanced models exemplify Elephant Robotics’ commitment to practical robotics. The wheeled humanoid robot Mercury X1 integrates advanced technology with a state-of-the-art mobile platform, ensuring not only versatility but also the feasibility of large-scale production and deployment.

Embracing the Power of Reliable Embodied AI

The Mercury Series is engineered as the ideal hardware platform for embodied AI research, providing robust support for sophisticated AI algorithms and real-world applications. Elephant Robotics demonstrates its commitment to innovation through the Mercury series’ compatibility with NVIDIA’s ISSACSIM, a state-of-the-art simulation platform that facilitates sim2real learning, bridging the gap between virtual environments and physical robot interaction.

The Mercury Series is perfectly suited for the study and experimentation of mainstream large language models in embodied AI. Its advanced capabilities allow seamless integration with the latest AI research. This provides a reliable and scalable platform for exploring the frontiers of machine learning and robotics.

Furthermore, the Mercury Series is complemented by the myArm C650, a teleoperation robotic arm that enables rapid acquisition of physical data. This feature supports secondary learning and adaptation, allowing for immediate feedback and iterative improvements in real-time. These features, combined with the Mercury Series’ reliability and practicality, make it the preferred hardware platform for researchers and institutions looking to advance the field of embodied AI.

The Mercury Series is supported by a rich software ecosystem, compatible with major programming languages, and integrates seamlessly with industry-standard simulation software. This comprehensive development environment is enhanced by a range of auxiliary hardware, all designed with mass production practicality in mind.

A set of images showing a robot in a variety of situations. Elephant Robotics

Drive to Innovate: Mass Production and Global Benchmarks

The “Power Spring” harmonic drive modules, a hallmark of the Elephant Robotics’ commitment to innovation for mass production, have been meticulously engineered to offer an unparalleled torque-to-weight ratio. These components are a testament to the company’s foresight in addressing the practicalities of large-scale manufacturing. The incorporation of carbon fiber in the design of these modules not only optimizes agility and power but also ensures that the robots are well-prepared for the rigors of the production line and real-world applications. The Mercury Series, with its spirit of innovation, is making a significant global impact, setting a new benchmark for what practical robotics can achieve.

Elephant Robotics is consistently delivering mass-produced robots to a range of renowned institutions and industry leaders, thereby redefining the industry standards for reliability and scalability. The company’s dedication to providing more than mere prototypes is evident in the active role its robots play in various sectors, transforming industries that are in search of dependable and efficient robotic solutions.

Conclusion: The Mercury Series—A Beacon for the Future of Practical Robotics

The Mercury Series represents more than a product; it is a beacon for the future of practical robotics. Elephant Robotics’ dedication to affordability, accessibility, and technological advancement ensures that the Mercury Series is not just a research tool but a platform for real-world impact.

Mercury Usecases | Explore the Capabilities of the Wheeled Humanoid Robot and Discover Its Precision youtu.be

Elephant Robotics: https://www.elephantrobotics.com/en/

Mercury Robot Series: https://www.elephantrobotics.com/en/mercury-humanoid-robot/

Video Friday: Humanoids Building BMWs



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDS
ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

Figure is making progress toward a humanoid robot that can do something useful, but keep in mind that the “full use case” here is not one continuous shot.

[ Figure ]

Can this robot survive a 1-meter drop? Spoiler alert: it cannot.

[ WVUIRL ]

One of those things that’s a lot harder for robots than it probably looks.

This is a demo of hammering a nail. The instantaneous rebound force from the hammer is absorbed through a combination of the elasticity of the rubber material securing the hammer, the deflection in torque sensors and harmonic gears, back-drivability, and impedance control. This allows the nail to be driven with a certain amount of force.

[ Tokyo Robotics ]

Although bin packing has been a key benchmark task for robotic manipulation, the community has mainly focused on the placement of rigid rectilinear objects within the container. We address this by presenting a soft robotic hand that combines vision, motor-based proprioception, and soft tactile sensors to identify, sort, and pack a stream of unknown objects.

[ MIT CSAIL ]

Status Update: Extending traditional visual servo and compliant control by integrating the latest reinforcement and imitation learning control methodologies, UBTECH gradually trains the embodied intelligence-based “cerebellum” of its humanoid robot Walker S for diverse industrial manipulation tasks.

[ UBTECH ]

If you’re gonna ask a robot to stack bread, better make it flat.

[ FANUC ]

Cassie has to be one of the most distinctive sounding legged robots there is.

[ Paper ]

Twice the robots are by definition twice as capable, right...?

[ Pollen Robotics ]

The Robotic Systems Lab participated in the Advanced Industrial Robotic Applications (AIRA) Challenge at the ACHEMA 2024 process industry trade show, where teams demonstrated their teleoperated robotic solutions for industrial inspection tasks. We competed with the ALMA legged manipulator robot, teleoperated using a second robot arm in a leader-follower configuration, placing us in third place for the competition.

[ ETHZ RSL ]

This is apparently “peak demand” in a single market for Wing delivery drones.

[ Wing ]

Using a new type of surgical intervention and neuroprosthetic interface, MIT researchers, in collaboration with colleagues from Brigham and Women’s Hospital, have shown that a natural walking gait is achievable using a prosthetic leg fully driven by the body’s own nervous system. The surgical amputation procedure reconnects muscles in the residual limb, which allows patients to receive “proprioceptive” feedback about where their prosthetic limb is in space.

[ MIT ]

Coal mining in Forest of Dean (UK) is such a difficult and challenging job. Going into the mine as human is sometimes almost impossible. We did it with our robot while inspecting the mine with our partners (Forestry England) and the local miners!

[ UCL RPL ]

Chill.

[ ABB ]

Would you tango with a robot? Inviting us into the fascinating world of dancing machines, robot choreographer Catie Cuan highlights why teaching robots to move with grace, intention and emotion is essential to creating AI-powered machines we will want to welcome into our daily lives.

[ TED ]

Persona AI Brings Calm Experience to the Hectic Humanoid Industry



It may at times seem like there are as many humanoid robotics companies out there as the industry could possibly sustain, but the potential for useful and reliable and affordable humanoids is so huge that there’s plenty of room for any company that can actually get them to work. Joining the dozen or so companies already on this quest is Persona AI, founded last month by Nic Radford and Jerry Pratt, two people who know better than just about anyone what it takes to make a successful robotics company, although they also know enough to be wary of getting into commercial humanoids.


Persona AI may not be the first humanoid robotics startup, but its founders have some serious experience in the space:

Nic Radford lead the team that developed NASA’s Valkyrie humanoid robot, before founding Houston Mechatronics (now Nauticus Robotics), which introduced a transforming underwater robot in 2019. He also founded Jacobi Motors, which is commercializing variable flux electric motors.

Jerry Pratt worked on walking robots for 20 years at the Institute for Human and Machine Cognition (IHMC) in Pensacola, Florida. He co-founded Boardwalk Robotics in 2017, and has spent the last two years as CTO of multi-billion-dollar humanoid startup Figure.

“It took me a long time to warm up to this idea,” Nic Radford tells us. “After I left Nauticus in January, I didn’t want anything to do with humanoids, especially underwater humanoids, and I didn’t even want to hear the word ‘robot.’ But things are changing so quickly, and I got excited and called Jerry and I’m like, this is actually very possible.” Jerry Pratt, who recently left Figure due primarily to the two-body problem, seems to be coming from a similar place: “There’s a lot of bashing your head against the wall in robotics, and persistence is so important. Nic and I have both gone through pessimism phases with our robots over the years. We’re a bit more optimistic about the commercial aspects now, but we want to be pragmatic and realistic about things too.”

Behind all of the recent humanoid hype lies the very, very difficult problem of making a highly technical piece of hardware and software compete effectively with humans in the labor market. But that’s also a very, very big opportunity—big enough that Persona doesn’t have to be the first company in this space, or the best funded, or the highest profile. They simply have to succeed, but of course sustainable commercial success with any robot (and bipedal robots in particular) is anything but simple. Step one will be building a founding team across two locations: Houston and Pensacola, Fla. But Radford says that the response so far to just a couple of LinkedIn posts about Persona has been “tremendous.” And with a substantial seed investment in the works, Persona will have more than just a vision to attract top talent.

For more details about Persona, we spoke with Persona AI co-founders Nic Radford and Jerry Pratt.

Why start this company, why now, and why you?

Nic Radford

Nic Radford: The idea for this started a long time ago. Jerry and I have been working together off and on for quite a while, being in this field and sharing a love for what the humanoid potential is while at the same time being frustrated by where humanoids are at. As far back as probably 2008, we were thinking about starting a humanoids company, but for one reason or another the viability just wasn’t there. We were both recently searching for our next venture and we couldn’t imagine sitting this out completely, so we’re finally going to explore it, although we know better than anyone that robots are really hard. They’re not that hard to build; but they’re hard to make useful and make money with, and the challenge for us is whether we can build a viable business with Persona: can we build a business that uses robots and makes money? That’s our singular focus. We’re pretty sure that this is likely the best time in history to execute on that potential.

Jerry Pratt: I’ve been interested in commercializing humanoids for quite a while—thinking about it, and giving it a go here and there, but until recently it has always been the wrong time from both a commercial point of view and a technological readiness point of view. You can think back to the DARPA Robotics Challenge days when we had to wait about 20 seconds to get a good lidar scan and process it, which made it really challenging to do things autonomously. But we’ve gotten much, much better at perception, and now, we can get a whole perception pipeline to run at the framerate of our sensors. That’s probably the main enabling technology that’s happened over the last 10 years.

From the commercial point of view, now that we’re showing that this stuff’s feasible, there’s been a lot more pull from the industry side. It’s like we’re at the next stage of the Industrial Revolution, where the harder problems that weren’t roboticized from the 60s until now can now be. And so, there’s really good opportunities in a lot of different use cases.

A bunch of companies have started within the last few years, and several were even earlier than that. Are you concerned that you’re too late?

Radford: The concern is that we’re still too early! There might only be one Figure out there that raises a billion dollars, but I don’t think that’s going to be the case. There’s going to be multiple winners here, and if the market is as large as people claim it is, you could see quite a diversification of classes of commercial humanoid robots.

Jerry Pratt

Pratt: We definitely have some catching up to do but we should be able to do that pretty quickly, and I’d say most people really aren’t that far from the starting line at this point. There’s still a lot to do, but all the technology is here now—we know what it takes to put together a really good team and to build robots. We’re also going to do what we can to increase speed, like by starting with a surrogate robot from someone else to get the autonomy team going while building our own robot in parallel.

Radford: I also believe that our capital structure is a big deal. We’re taking an anti-stealth approach, and we want to bring everyone along with us as our company grows and give out a significant chunk of the company to early joiners. It was an anxiety of ours that we would be perceived as a me-too and that nobody was going to care, but it’s been the exact opposite with a compelling response from both investors and early potential team members.

So your approach here is not to look at all of these other humanoid robotics companies and try and do something they’re not, but instead to pursue similar goals in a similar way in a market where there’s room for all?

Pratt: All robotics companies, and AI companies in general, are standing on the shoulders of giants. These are the thousands of robotics and AI researchers that have been collectively bashing their heads against the myriad problems for decades—some of the first humanoids were walking at Waseda University in the late 1960s. While there are some secret sauces that we might bring to the table, it is really the combined efforts of the research community that now enables commercialization.

So if you’re at a point where you need something new to be invented in order to get to applications, then you’re in trouble, because with invention you never know how long it’s going to take. What is available today and now, the technology that’s been developed by various communities over the last 50+ years—we all have what we need for the first three applications that are widely mentioned: warehousing, manufacturing, and logistics. The big question is, what’s the fourth application? And the fifth and the sixth? And if you can start detecting those and planning for them, you can get a leg up on everybody else.

The difficulty is in the execution and integration. It’s a ten thousand—no, that’s probably too small—it’s a hundred thousand piece puzzle where you gotta get each piece right, and occasionally you lose some pieces on the floor that you just can’t find. So you need a broad team that has expertise in like 30 different disciplines to try to solve the challenge of an end-to-end labor solution with humanoid robots.

Radford: The idea is like one percent of starting a company. The rest of it, and why companies fail, is in the execution. Things like, not understanding the market and the product-market fit, or not understanding how to run the company, the dimensions of the actual business. I believe we’re different because with our backgrounds and our experience we bring a very strong view on execution, and that is our focus on day one. There’s enough interest in the VC community that we can fund this company with a singular focus on commercializing humanoids for a couple different verticals.

But listen, we got some novel ideas in actuation and other tricks up our sleeve that might be very compelling for this, but we don’t want to emphasize that aspect. I don’t think Persona’s ultimate success comes just from the tech component. I think it comes mostly from ‘do we understand the customer, the market needs, the business model, and can we avoid the mistakes of the past?’

How is that going to change things about the way that you run Persona?

Radford: I started a company [Houston Mechatronics] with a bunch of research engineers. They don’t make the best product managers. More broadly, if you’re staffing all your disciplines with roboticists and engineers, you’ll learn that it may not be the most efficient way to bring something to market. Yes, we need those skills. They are essential. But there’s so many other aspects of a business that get overlooked when you’re fundamentally a research lab trying to commercialize a robot. I’ve been there, I’ve done that, and I’m not interested in making that mistake again.

Pratt: It’s important to get a really good product team that’s working with a customer from day one to have customer needs drive all the engineering. The other approach is ‘build it and they will come’ but then maybe you don’t build the right thing. Of course, we want to build multi-purpose robots, and we’re steering clear of saying ‘general purpose’ at this point. We don’t want to overfit to any one application, but if we can get to a dozen use cases, two or three per customer site, then we’ve got something.

There still seems to be a couple of unsolved technical challenges with humanoids, including hands, batteries, and safety. How will Persona tackle those things?

Pratt: Hands are such a hard thing—getting a hand that has the required degrees of freedom and is robust enough that if you accidentally hit it against your table, you’re not just going to break all your fingers. But we’ve seen robotic hand companies popping up now that are showing videos of hitting their hands with a hammer, so I’m hopeful.

Getting one to two hours of battery life is relatively achievable. Pushing up towards five hours is super hard. But batteries can now be charged in 20 minutes or so, as long as you’re going from 20 percent to 80 percent. So we’re going to need a cadence where robots are swapping in and out and charging as they go. And batteries will keep getting better.

Radford: We do have a focus on safety. It was paramount at NASA, and when we were working on Robonaut, it led to a lot of morphological considerations with padding. In fact, the first concepts and images we have of our robot illustrate extensive padding, but we have to do that carefully, because at the end of the day it’s mass and it’s inertia.

What does the near future look like for you?

Pratt: Building the team is really important—getting those first 10 to 20 people over the next few months. Then we’ll want to get some hardware and get going really quickly, maybe buying a couple of robot arms or something to get our behavior and learning pipelines going while in parallel starting our own robot design. From our experience, after getting a good team together and starting from a clean sheet, a new robot takes about a year to design and build. And then during that period we’ll be securing a customer or two or three.

Radford: We’re also working hard on some very high profile partnerships that could influence our early thinking dramatically. Like Jerry said earlier, it’s a massive 100,000 piece puzzle, and we’re working on the fundamentals: the people, the cash, and the customers.

Video Friday: Humanoids Get a Job



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDS
ICRA@40: 23–26 September 2024, ROTTERDAM, NETHERLANDS
IROS 2024: 14–18 October 2024, ABU DHABI, UAE
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

Agility has been working with GXO for a bit now, but the big news here (and it IS big news) is that Agility’s Digit robots at GXO now represent the first formal commercial deployment of humanoid robots.

[ GXO ]

GXO can’t seem to get enough humanoids, because they’re also starting some R&D with Apptronik.

[ GXO ]

In this paper, we introduce a full-stack system for humanoids to learn motion and autonomous skills from human data. Through shadowing, human operators can teleoperate humanoids to collect whole-body data for learning different tasks in the real world. Using the data collected, we then perform supervised behavior cloning to train skill policies using egocentric vision, allowing humanoids to complete different tasks autonomously by imitating human skills.

THAT FACE.

[ HumanPlus ]

Yeah these robots are impressive but it’s the sound effects that make it.

[ Deep Robotics ]

Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation–a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory, attention, and executive functioning at home.

[ CARMEN ] via [ UCSD ]

Thanks, Ioana!

The caption of this video is, “it did not work...”

You had one job, e-stop person! ONE JOB!

[ WVUIRL ]

This is a demo of cutting wood with a saw. When using position control for this task, precise measurement of the cutting amount is necessary. However, by using impedance control, this requirement is eliminated, allowing for successful cutting with only rough commands.

[ Tokyo Robotics ]

This is mesmerizing.

[ Oregon State ]

Quadrupeds are really starting to look like the new hotness in bipedal locomotion.

[ University of Leeds ]

I still think this is a great way of charging a robot. Make sure and watch until the end to see the detach trick.

[ YouTube ]

The Oasa R1, now on Kickstarter for $1,200, is the world’s first robotic lawn mower that uses one of them old timey reely things for cutting.

[ Kickstarter ]

ICRA next year is in Atlanta!

[ ICRA 2025 ]

Our Skunk Works team developed a modified version of the SR-71 Blackbird, titled the M-21, which carried an uncrewed reconnaissance drone called the D-21. The D-21 was designed to capture intelligence, release its camera, then self-destruct!

[ Lockheed Martin ]

The RPD 35 is a robotic powerhouse that surveys, distributes, and drives wide-flange solar piles up to 19 feet in length.

[ Built Robotics ]

Field AI’s brain technology is enabling robots to autonomously explore oil and gas facilities, navigating throughout the site and inspecting equipment for anomalies and hazardous conditions.

[ Field AI ]

Husky Observer was recently deployed at a busy automotive rail yard to carry out various autonomous inspection tasks including measuring train car positions and RFID data collection from the offloaded train inventory.

[ Clearpath ]

If you’re going to try to land a robot on the Moon, it’s useful to have a little bit of the Moon somewhere to practice on.

[ Astrobotic ]

Would you swallow a micro-robot? In a gutsy demo, physician Vivek Kumbhari navigates Pillbot, a wireless, disposable robot swallowed onstage by engineer Alex Luebke, modeling how this technology can swiftly provide direct visualization of internal organs. Learn more about how micro-robots could move us past the age of invasive endoscopies and open up doors to more comfortable, affordable medical imaging.

[ TED ]

How will AI improve our lives in the years to come? From its inception six decades ago to its recent exponential growth, futurist Ray Kurzweil highlights AI’s transformative impact on various fields and explains his prediction for the singularity: the point at which human intelligence merges with machine intelligence.

[ TED ]

❌
❌