Meta Orion (Pt. 3 Response to Meta CTO on Eye Glow and Transparency)
Introduction: Challenge from Bosworth Accepted
Several people pointed me to an interesting Instagram video AMA (ask me anything) by Meta CTO Andrew Bosworth on October 21, 2024, that appeared to challenge my October 6th article, Meta Orion AR Glasses (Pt. 1 Waveguide), which discussed both transparency and “Eye Glow” (what Bosworth Referred to as “Blue Glow”) — Challenge Accepted.
On the right is a Google Search for “Meta” [and] “Orion” [and] “Eye Glow” OR “Blue Glow” from Sept 7th (Orion announced) through Oct 28, 2024. Everything pertinent to the issue was from this blog or was citing this blog. A Google Search for “Meta Orion” and “blue glow” returns nothing. Shown on the right is a Google search.
As far as I can find, this blog (and a few other sites citing this blog) has been the only one reporting on Meta Orion’s transparency or Eye Glow. So when Bosworth said, “Another thing that was kind of funny about the reviews is people were like, oh, you know you can see the blue glow well,” who else could he be referring to?
Housekeeping – Parts 2 and 3 of the Snap and Orion Roundtable are to be released soon.
The rest of the two-hour roundtable discussion about Snap Spectacles and Meta Orion should be released soon. Part 2 will focus on Meta Orion. Part 3 will discuss more applications and market issues, along with some scuttlebutt about Meta’s EMG wristband controller.
Bosworth’s Statement on Transparency and Eye Glow in Instagram AMA Video – Indirect Shout Out to this Blog
Below is computer transcription with minor light to clean up the speech-to-text and add punctuation and capitalization) of Bosworth’s October 21, 2024, AMA on Instagram, starting at about 14:22 into the video.
14:22 Question: What % of light does Orion block from your view of the world, how much is it darkened?
I don’t know exactly. So, all glass limits transmission to some degree. So, even if you have completely clear glasses, you know, maybe they take you from 100% transmission up your eyes like 97% um, and normal sunglasses that you have are much darker than you think they’re like 17% transmissive is like a standard for sunglasses. Orion is clear. It’s closer [to clear], I don’t know what the exact number is, but it’s closer to regular prescription glasses than any kind of glasses [in context, he sounds like he is referring to other AR glasses]. There’s no tint on it [Orion]. We did put tint on a couple of demo units so we could see what that looked like, but that’s not how they [Orion] work.
I won’t get into the electrochromic and that kind of stuff. Some people were theorizing that they were tinted to increase contrast. This is not uncommon [for AR] glasses. We’re actually quite proud that these were not. If I was wearing them, and you’re looking at my eyes, you would just see my eyes.
Note that Bosworth mentioned electrochromic [dimming] but “won’t get into it.” As I stated in Orion Part 1, I believe Orion has electrochromic (electrically controlled) dimming. While not asked, Bosworth gratuitously discusses “Blue Glow,” which in context can only mean “Eye Glow.”
Another thing that was kind of funny about the reviews is people were like, oh, you know you can see the blue glow well. What we noticed was so funny was the photographers from the press who were taking pictures of the glasses would work hard to get this one angle, which is like 15 degrees down and to the side where you do see the blue glow. That’s what we’re actually shunting the light to. If you’re standing in front of me looking at my eyes, you don’t see the glow, you just see my eyes. We really worked hard on that we’re very proud of it.
But of course, if you’re the person who’s assigned by some journalist outfit to take pictures of these new AR glasses, you want to have pictures that look like you can see something special or different about them. It was so funny as every Outlet included that one angle. And if you look at them all now, you’ll see that they’re all taken from this one specific down and to the side angle.
As far as I can find (it’s difficult to search), this blog is the only place that has discussed the transparency percentage of Orion’s glasses (see: Light Transmission (Dimming?)). Also, as discussed in the introduction, this blog is the only one discussing eye glow (see Eye Glow) in the same article. Then, consider how asking about the percentage of light blockage caused Bosworth to discuss blue [eye] glow — a big coincidence?
But what caused me to write this article is the factually incorrect statement that the only place [the glow] is visible is from “15 degrees down and to the side.“ He doth protest too much, methinks. Most graciously
Orion’s Glow is in pictures taken from more than “taken from this one specific down and to the side angle”
To begin with, the image I show in Meta Orion AR Glasses (Pt. 1 Waveguide), shows a more or less straight-on shot from a video by The Verge (right). It is definitely not shot from a “down and to the side angle.”
In fact, I was able to find images with Bosworth in which the camera was roughly straight on, from down and to the side, and even looking down on the Orion glasses Bosworth’s Sept. 25, 2024, Instagram video and in Adam Savage’s Tested video (far right below).
In the same The Verge Video, there is eye-glow with Mark Zuckerburg looking almost straight on into the camera and from about eye level to the side.
The eye glow was even captured by the person wearing another Orion headset when playing a pong-like game. The images below are composites of the Orion camera and what was shown in the glasses; thus, they are simulated views (and NOT through the Orion’s waveguide). The stills are from The Verge (left) and CNBC (right).
Below are more views of the eye-glow (mostly blue in this case) from the same The Verge video.
The eye glow stills frames below were captured from a CNBC video.
Here are a few more examples of eye glow that were taken while playing the pong-like game from roughly the same location as the CNBC frames above right. They were taken from about even with the glasses but off to the side.
In summary, there is plenty of evidence that the eye glow from Meta’s Orion can be seen from many different angles, not just from below but also from the side, as Bosworth states.
Meta Orion’s Transparency and Electrochromic Dimming
Bosworth’s deflection on the question of Orion’s light transmission
Bosworth started by correctly saying that nothing manmade is completely transparent. A typical (uncoated) glass reflects about 8% of the light. Eyeglasses with good antireflective coatings reflect about 0.5%. The ANSI/ISEA Z87.1, safety glasses standard, specifies “clear” as >85% transmission. Bosworth appears to catch himself knowing that there is a definition for clear and says that Orion is “closer to clear” than sunglasses at about 17%.
Bosworth then says there is “no tint” in Orion, but respectfully, that was NOT the question. He then says, “I won’t get into the electrochromic and that kind of stuff,” which is likely a major contributor to the light transmission. Any dimming technology I know of is going to block much more light than a typical waveguide. The transparency of Orion is a function of the waveguide, dimming layer, other optics layers, and inner and outer protection covers.
Since Bosworth evaded answering the question, I will work through it and try to get an answer. The process will include trying to figure out what kind of dimming I think Orion uses.
What type of electrochromic dimming is Orion Using?
First, I want to put in context what my first article was discussing regarding Orion’s Light Transmission (Dimming?). I was well aware that diffractive waveguides, even glass ones, alone are typically about 85-90% transmissive. From various photographs, I’m pretty sure Orion has some form of electrochromic dimming, as I stated in the first article. I could see the dimming change in one video, and in view of the exploded parts, there appeared to be a dimming device. In looking at this figure, the dimming device seems fairly transparent and on the order of the waveguides and other flat optics. What I was trying to figure out was whether they were using more common polarization-based dimming or a non-polarization-based technology. This picture is inconclusive as to the type of dimming that is used, as the dimmer identified (by me) might be only the liquid crystal part of the shutter with the polarizers, if there are any, in the cover glass or not shown.
The Magic Leap 2 (see: Magic Leap 2 (Pt. 3): Soft Edge Occlusion, a Solution for Investors and Not Users). Polarization-based dimming is fast and gives a very wide range of dimming (from 10:1 to >100:1), but it requires the real-world light first to be polarized, and when everything is considered, it blocks more than 70% of the light. It’s also possible to get somewhat better transmission by using semi-polarizing polarizers, but it gives up a lot of dimming range to gain some transmission. Polarization also causes issues when looking at LCDs, such as computer monitors and some cell phones.
Non-polarization dimming (see, for example, CES & AR/VR/MR Pt. 4 – FlexEnable’s Dimming, Electronic Lenses, & Curved LCDs) blocks less light in its most transmissive state but has less of a dimming range. For example, FlexEnable has a dimming cell that ranges between ~87% transmissive to 35% or less than a 3:1 dimming range. Snap Spectacles 5 uses (based on a LinkedIn post that has since been removed) a non-polarization-based electrochromic dimming by Alphamicron, what they call e-Tint. Both AlphaMicron’s e-Tint and FlexEnable’s dimming use what is known as Guest-Host LC, which absorbs light rather than changing polarization.
Assuming Orion uses non-polarization dimming, I would assume that the waveguide and related optical surfaces have about 85-90% transmissivity and about 70% to 80% for non-polarization dimming. Since the two effects are multiplicative, that would put Orion in the 90%x80% = 72% to 85 x70% = 60% range.
Orion’s Dimming
Below are a series of images from videos by CNET, The Verge, and Bloomberg. Notice that CNET’s image appears to be much more transmissive. On both CNET and The Verge, I included eye glow pictures from a few frames in the video later to prove both glasses were turned on. CNET’s Orion glasses are significantly more transparent than any other Orion video I have seen (from over 10 I have looked at to date), even when looking at the same demos as in the videos. I missed this big difference when preparing my original article and only discovered it when preparing this article.
Below are some more frame captures on the top row. On the bottom row, there are pictures of the Lumus Maximus (the most transparent waveguide I have seen), WaveOptic Titan, The Magic Leap One (with no tint), and circular polarizing glasses for comparison. The circular polarizing glasses are approximately what I would expect if the Orion glasses were using polarizing dimming.
Snap Spectacles 5, which uses non-polarization dimming, is shown on the left. It compares reasonably well to the CNET mage. Based on the available evidence, it appears that Orion must also be using an electrochromic dimming technology. Per my prior estimate, this would put Orion’s best-case (CNET) transparency in the range of 60-70%
What I don’t know is why CNET was so much more transparent than the others, even when they appear to be in similar lighting. My best guess is that the dimming feature was adjusted differently or disabled for the CNET video.
Why is Orion Using Electronic Dimming Indoors?
All the Orion videos I have seen indicate that Orion is adding electrochromic dimming when indoors. Even bright indoor lighting is much less bright than sunlight. Unlike Snap Spectacles 5 (with electronic dimming) demos, Meta didn’t demo the unit outdoors. There can be several reasons, including:
- The most obvious reason is the lack of display brightness.
- For colors to “pop,” they need to be at least 8x brighter than the surroundings. Bright white objects in a well-lit room could be more than 50 nits. Maybe they couldn’t or didn’t want to go that bright for power/heat reasons.
- Reduced heat of the MicroLEDs
- Saves on battery life
Thinking about this issue made me notice that the walls in the demo room are painted a fairly dark color. Maybe it was a designer’s decision, but it also goes to my saying, “Demos is a Magic Show,” and that darker walls would make the AR display look better.
When this is added up, it suggests that the displays in the demos were likely outputting about 200 nits (just an educated guess). While ~200 nits would be a bright computer monitor, colors would be washed out in a well-lit room when viewed against a non-black background (monitors “bring their own black background”). Simply based on how they demoed it, I suspect that Snap Spectacles 5 is four to eight times brighter than Orion with the dimming used to work outdoors (rather than indoors).
Conclusion and Comments
When I first watched Bosworth’s video, his argument that the eye glow could only be seen from one angle seemed persuasive. But then I went back to check and could easily see that what he stated was provably false. I’m left to speculate as to why he brought up the eye glow issue (as it was not the original question) and proceeded to give erroneous information. It did motivate me to understand Orion better😁.
Based on what I saw in the CNET picture and what is a reasonable assumption for the waveguide, non-polarizing dimmer, and other optics (with transparency being multiplicative and not additive), it pegs Orion in the 60% transparency range plus or minus about 5%.
Bosworth’s answer on transparency was evasive, saying there was no “tint,” which was a non-answer. He mentioned electrochromic dimming but didn’t say for sure that Orion was using it. In the end, he said Orion was closer to prescription glasses (which are about 90% uncoated, 99.5% with anti-reflective coatings) than sunglasses at 17%. If we take uncoated glasses at 90% and sunglasses at 17%, then the midpoint between them would be 53% so that Orion may be, at best, slightly closer to uncoated eyeglasses than sunglasses. There are waveguide-based AR glasses that are more transparent (but without dimming) than Orion.
Bosworth gave more of an off-the-cuff AMA and not a formal presentation for a broad audience, and some level of generalization and goofs are to be expected. While he danced around the transparency issue a bit, it was the “glow” statement and its specificity that I have more of an issue with.
Even though Bosworth is the CTO and head of Meta’s Reality Labs, his background is in software, not optics so that he may have been ill-informed rather than deliberately misleading. I generally find him likable in the videos, and he shares a lot of information (while I have met many people from Meta’s Reality Labs, I have not met Bosworth). At the same time, it sounds to my ear that when he discusses optics, he is parroting things things he has been told, sometimes without fully understanding what he is saying. This is in sharp contrast to, say, Hololen’s former leader, Alex Kipman, who I believe out and out lied repeatedly.
Working on this article caused me to reexamine what Snap Spectacles was using for dimming. In my earlier look at AlphaMicron, I missed that AlphaMicron’s “e-Tint®” was a Guest Host dimming technology rather than a polarization-based one.
From the start, I was pretty sure Orion was using electrochromic dimming, but I was not sure whether it was polarization or non-polarization-based. In working through this article, I’m now reasonably certain it is a non-polarization-based dimming technology.
Working through this article, I realized that the available evidence also suggests that Orion’s display is not very bright. I would guess less than 200 nits, or at least they didn’t want to drive it brighter than that for very long.
Appendix: Determining the light blocking from videos is tricky
Human vision has a huge dynamic range and automatically adjusts as light varies. As Bosworth stated, typical sunglasses are less than 75% transmissive. Human perception of brightness is somewhat binary logarithmic. If there is plenty of available light, most people will barely notice a 50% dimming.
When wearing AR glasses, a large percentage (for some AR headsets, nearly all) of the light needed to view the eye will pass through the AR lens optics twice (in and back out). Because light blocking in series is multiplicative, this can cause the eyes to look much darker than what the person perceives when looking through them.
I set up a simple test using Wave Optic’s waveguide, which is ~85% transmissive, circular polarizing glasses (for 3-D movies) that was 33% tranmissive, and a Magic Leap One waveguide (out of the frame) that was 70% transmissive. In the upper right, I have shown a few examples of where I had a piece of white paper far enough away from the lens that the lens did not affect the illumination of the paper. On the lower right, I moved the paper up against the lens so the paper was primarily illuminated via the lens to demonstrate the light-blocking squared effect.
Orion’s Silicon Carbide (SiC) is not significantly more transparent than glass. Most of the light blocking in a diffraction waveguide comes from the diffraction grating, optical coatings, and number of layers. Considering that Orion’s “hero prototype” with $5B in R&D expenses for only 1,000 units, it is probably more transparent by about 5%.
When looking at open glasses like Orion (unlike, say, Magic Leap or Hololens), the lenses block only part of the eye’s illumination, so you get something less than the square law effect. So, in judging the amount of light blocking, you also have to estimate how much light is getting around the lenses and frames.