Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Engineering Students Innovate Accessibility Technology



More than 15 percent of the world’s population—greater than 1 billion people—live with disabilities including hearing loss, vision problems, mental health challenges, and lack of mobility. EPICS in IEEE has engaged students’ ingenuity worldwide to address accessibility issues through adaptive services, redesigned technology, and new assistive technologies during its 2023 Access and Abilities Competition.

The competition challenged university students around the world to use their engineering skills to help with accessibility issues. The EPICS in IEEE Committee received 58 proposals and selected 23 projects, which were funded in early 2023.

EPICS is a grant-based program for IEEE Educational Activities that funds service learning projects for university and high school students.

The teams, which include faculty members and IEEE members, create and execute engineering projects in partnership with organizations to improve their communities.

“Some gamers with arm or hand deficiencies play with their feet, nose, mouth, or elbows, or they use devices not intended for that purpose and are forced to adapt. I realized that if there was a dedicated device designed for such individuals, they’d be able to play and experience the joy of gaming.” —John McCauley.

The four EPICS in IEEE pillars are access and abilities; environment; education and outreach; and human services. In the Access and Abilities Competition, student teams received between US $1,000 and $10,000. Each team had 12 months to build a prototype or solution in collaboration with its community partners. The projects, which involved more than 350 students and 149 IEEE volunteers, aimed to help an estimated 8,000 people in the first year of deployment.

The teams included participants from IEEE student branches, IEEE Women in Engineering groups, IEEE–Eta Kappa Nu honor society chapters, and IEEE sections.

Projects included a sound-detection device and a self-navigating robotic walking aid.

The competition was funded by the Taenzer Memorial Fund in 2019, with $90,000 allocated by the IEEE Foundation. The fund was established with a bequest from the estate of Jon C. Taenzer, an IEEE life senior member.

The student teams submitted their final reports this year.

Here are highlights from four of the projects:

Adaptive mouse for gaming

A photo of a smiling man and woman in front of electrical components. Members of the adaptive mouse EPICS in IEEE team at the University of Florida in Gainesville designed a device that contains keyboard functions and can be used with just one hand.EPICS in IEEE

A team of 10 biomedical engineering students at the University of Florida in Gainesville designed their project to help people whose hands or arms have an abnormality, so they could more easily play games.

The team built five adaptive mouse devices and plans to deliver them this year to five recipients involved with Hands to Love, a Florida-based organization that supports children with upper limb abnormalities.

The team incorporated the keyboard elements of gaming into a mouse, allowing gaming gestures and movements with just one hand. The 3D-printed mouse combines existing gaming technology, including the internal mechanisms of keyboards, a Logitech mouse, and Microsoft Xbox controller emulations. It allows the player to move and aim while gaming with just a mouse.

Gaming enthusiast John McCauley, a junior in the university’s biomedical engineering program, was behind the project’s conception.

“Some gamers with arm or hand deficiencies play with their feet, nose, mouth, or elbows, or they use devices not intended for that purpose and are forced to adapt,” McCauley says. “I realized that if there was a dedicated device designed for such individuals, they’d be able to play and experience the joy of gaming.”

The team used its $1,000 EPICS in IEEE grant to purchase the prototype’s components.

Making campus more accessible

A photo of two people sitting in front of a laptop. Universidad Tecnólogica de Panamá students test their microcontroller-based prototype, designed to help make their school more accessible.EPICS in IEEE

A team of 15 undergraduate students from the Universidad Tecnológica de Panamá in Panama City and 24 students from four high schools in Chiriquí, Panama, created several projects focused on people with visual or physical disabilities. The team’s goal was to make their campus and community more accessible to those with different abilities. The projects enhanced their classmates’ autonomy and improved their quality of life.

The team made braille signs using a 3D printer, and they designed and built a personalized wheelchair. The students also automated the doors within the engineering department to provide better access to classrooms and corridors for those with disabilities.

“This project will be very useful, especially [in Panama], where buildings have not been adapted for people with disabilities,” said team member Gael Villarreal, a high school junior.

While working together on the project, team members honed their technical and interpersonal skills. They came to appreciate the importance of collaboration and communication.

“I learned that you need to have new experiences, be sociable, meet and get along with new people, and work as a team to be successful,” high school junior Gianny Rodriguez said.

The team used its $8,100 EPICS grant to purchase materials and train the community on using the new tools.

Helping children with hearing impairments

A team of students from the SRM Institute of Science and Technology student branch, in Chennai, India, worked with the Dr. MGR Home and Higher Secondary School for the Speech and Hearing Impaired, also in Chennai, to build a device to help children with hearing aids and cochlear implants learn Tamil, the local language. In rural areas, young children often do not have access to specialized speech and hearing health care providers to learn critical language skills. The team’s assistive device supports native language skill development, helping parents and trainers support the children in language and sound acquisition.

The project is designed to provide access to aural rehabilitation, including identifying hearing loss and therapies for children far from hospitals and rehabilitation centers.

The kiosklike device resembles an ATM and includes surround-sound speakers and touchscreens. It uses a touch monitor and microphones to access tasks and tests that help young children learn Tamil.

The team worked with 150 pupils at the school between the ages of 5 and 8 to develop the prototype. The built-in app includes tasks that focus on improving auditory awareness, auditory discrimination (the ability to recognize, compare, and distinguish between distinct sounds), and language acquisition (how people perceive and comprehend language).

The device tests the pupil’s hearing range based on sounds with visual cues, sounds at low intensity, sounds in the presence of noise, and sound direction.

The speakers emulate real-life situations and are used to relay the teacher’s instructions.

The team received a $1,605 grant to execute the project.

This video spotlights the challenges youngsters with hearing disabilities in Chenni, India, face and how the assistive technology will help them.


Self-navigating robotic walking aid

A group of people around a device and a sign that says, "Trinity Eldercare." Students from the IEEE Swinburne Sarawak student branch in Malaysia brought a prototype of their walking aid to Trinity Eldercare, their community partner.EPICS in IEEE

To help senior citizens with mobility issues, a team of students from the IEEE Swinburne Sarawak student branch at the Swinburne University of Technology, in Malaysia, created a self-navigating walking aid.

The team wanted to improve existing walkers on the market, so they surveyed residents at Trinity Eldercare to find out what features would be useful to them.

The students’ prototype, based on a commercial walker, includes a wearable haptic belt that detects obstacles and alerts the user. Pressure sensors in the hand grips sense which direction the user wants to go. One of the senior citizens’ most requested features was the ability to locate a misplaced walker. The team was able to address the issue using sensors.

“I gained substantial knowledge in robotics programming and artificial intelligence and deep learning integration for person tracking and autonomous navigation,” one of the team members said. “Additionally, presenting our smart walker prototype at the International Invention, Innovation, Technolgy Competition and Exhibition in Malaysia enhanced my presentation skills, as I successfully articulated its viability and usefulness to the judges.”

The project received a $1,900 grant.

Join the EPICS in IEEE mailing list to learn more about all the Access and Abilities Competition projects and other impactful efforts made possible by donations to the IEEE Foundation. To learn more, check out the video of the competition:

The EPICS in IEEE program is celebrating its 15th year of supporting and facilitating service-learning projects and impacting students and communities worldwide

Conference To Spotlight Harm Caused by Online Platforms



This year’s IEEE Conference on Digital Platforms and Societal Harms is scheduled to be held on 14 and 15 October in a hybrid format, with both in-person and virtual keynote panel sessions. The in-person events are to take place at American University, in Washington, D.C.

The annual conference focuses on how social media and similar platforms amplify hate speech, extremism, exploitation, misinformation, and disinformation, as well as what measures are being taken to protect people.

With the popularity of social media and the rise of artificial intelligence, content can be more easily created and shared online by individuals and bots, says Andre Oboler, the general chair of IEEE DPSH. The IEEE senior member is CEO of the Online Hate Prevention Institute, which is based in Sydney. Oboler cautions that a lot of content online is fabricated, so some people are making economic, political, social, and health care decisions based on inaccurate information.

“Addressing the creation, propagation, and engagement of harmful digital information is a complex problem. It requires broad collaboration among various stakeholders including technologists; lawmakers and policymakers; nonprofit organizations; private sectors; and end users.”

Misinformation (which is false) and disinformation (which is intentionally false) also can propagate hate speech, discrimination, violent extremism, and child sexual abuse, he says, and can create hostile online environments, damaging people’s confidence in information and endangering their lives.

To help prevent harm, he says, cutting-edge technical solutions and changes in public policy are needed. At the conference, academic researchers and leaders from industry, government, and not-for-profit organizations are gathering to discuss steps being taken to protect individuals online.

Experts to explore challenges and solutions

The event includes panel discussions and Q&A sessions with experts from a variety of technology fields and organizations. Scheduled speakers include Paul Giannasi from the U.K. National Police Chiefs’ Council; Skip Gilmour of the Global Internet Forum to Counter Terrorism; and Maike Luiken, chair of IEEE’s Planet Positive 2030 initiative.

“Addressing the creation, propagation, and engagement of harmful digital information is a complex problem,” Oboler says. “It requires broad collaboration among various stakeholders including technologists; lawmakers and policymakers; nonprofit organizations; private sectors; and end users.

“There is an emerging need for these stakeholders and researchers from multiple disciplines to have a joint forum to understand the challenges, exchange ideas, and explore possible solutions.”

To register for in-person and online conference attendance, visit the event’s website. Those who want to attend only the keynote panels can register for free access to the discussions. Attendees who register by 22 September and use the code 25off2we receive a 25 percent discount.

Check out highlights from the 2023 IEEE Conference on Digital Platforms and Societal Harms.

IEEE Introduces Digital Certificates Documenting Volunteer Roles



IEEE Collabratec has made it easier for volunteers to display their IEEE positions. The online networking platform released a new benefit this year for its users: digital certificates for IEEE volunteering. They reflect contributions made to the organization, such as leading a committee or organizing an event.

Members can download the certificates and add them to their LinkedIn profile or résumé. Volunteers also can print their certificates to frame and display in their office.

Each individualized document includes the person’s name, the position they’ve held, and the years served. Every position held has its own certificate. The member’s list of roles is updated annually.

The feature is a result of a top recommendation to improve volunteer recognition made by delegates at the 2023 IEEE Sections Congress, according to Deepak Mathur. The senior member is vice president of IEEE Member and Geographic Activities. The new feature “respects the time and effort of our volunteers and is a testament to the power and versatility of the Collabratec platform,” Mathur said in an announcement.

Members can download their certificates by selecting the Certificates tab on their Collabratec page and scrolling to each of their positions.

To learn more about IEEE Collabratec, check out the user guide, FAQs, and users’ forum.

IEEE and Keysight Team Up to Teach Kids About Electronics



IEEE TryEngineering has partnered with Keysight Technologies to develop lesson plans focused on electronics and power simulation. Keysight provides hardware, software, and services to a wide variety of industries, particularly in the area of electronic measurement.

IEEE TryEngineering, an IEEE Educational Activities program, empowers educators to foster the next generation of technology innovators through free, online access to culturally relevant, developmentally appropriate, and educationally sound instructional resources for teachers and community volunteers.

The lesson plans cover a variety of STEM topics, experience levels, and age ranges. Educators should be able to find an applicable topic for their students, regardless of their grade level or interests.

Lesson plans on circuits

There are already a number of lesson plans available through the Keysight partnership that introduce students to electrical concepts, with more being developed. The most popular one thus far is Series and Parallel Circuits, which has been viewed more than 100 times each month. Teams of pupils predict the difference between a parallel and serial circuit design by building examples using wires, light bulbs, and batteries.

“TryEngineering is proud to be Keysight’s partner in attaining the ambitious goal of bringing engineering lessons to 1 million students in 2024.” —Debra Gulick

The newest of the Keysight-sponsored lesson plans, Light Up Name Badge, teaches the basics of circuitry, such as the components of a circuit, series and parallel circuits, and electronic component symbols. Students can apply their newfound knowledge in a design challenge wherein they create a light-up badge with their name.

Developing a workforce through STEM outreach

“Keysight’s commitment to workforce development through preuniversity STEM outreach makes it an ideal partner for IEEE TryEngineering,” says Debra Gulick, director of student and academic education programs for IEEE Educational Activities.

In addition, Keysight’s corporate social responsibility vision to build a better planet by accelerating innovation to connect and secure the world while employing a global business framework of ethical, environmentally sustainable, and socially responsible operations makes it a suitable IEEE partner.

“TryEngineering is proud to be Keysight’s partner in attaining the ambitious goal of bringing engineering lessons to 1 million students in 2024,” Gulick says.

The IEEE STEM Summit, a three-day virtual event in October for IEEE volunteers and educators, is expected to include a session highlighting Keysight’s lesson plans.

Educators and volunteers engaged in outreach activities with students can learn more on the Keysight TryEngineering partnership page.

The arrangement with Keysight was made possible with support from the IEEE Foundation.

The President-Elect Candidates’ Plans to Further IEEE’s Mission



The annual IEEE election process begins this month, so be sure to check your mailbox for your ballot. To help you choose the 2025 IEEE president-elect, The Institute is publishing the official biographies and position statements of the three candidates, as approved by the IEEE Board of Directors. The candidates are IEEE Fellows Mary Ellen Randall, John Verboncoeur, and S.K. Ramesh.

In June, IEEE President Tom Coughlin moderated the Meet the 2025 IEEE President-Elect Candidates Forum, where the candidates were asked pressing questions from IEEE members.

IEEE Fellow Mary Ellen Randall

A smiling woman standing in front of a blue background. Deanna Decker Photography

Nominated by the IEEE Board of Directors

Randall founded Ascot Technologies in 2000 in Cary, N.C. Ascot develops enterprise applications using mobile data delivery technologies. She serves as the award-winning company’s CEO.

Before launching Ascot, she worked for IBM, where she held several technical and managerial positions in hardware and software development, digital video chips, and test design automation. She routinely managed international projects.

Randall has served as IEEE treasurer, director of IEEE Region 3, chair of IEEE Women in Engineering, and vice president of IEEE Member and Geographic Activities.

In 2016 she created the IEEE MOVE (Mobile Outreach VEhicle) program to assist with disaster relief efforts and for science, technology, engineering, and math educational purposes.

The IEEE-Eta Kappa Nu honor society member has received several honors including the 2020 IEEE Haraden Pratt Award, which recognizes outstanding volunteer service to IEEE.

She was named a top businesswoman in North Carolina’s Research Triangle Park area, and she made the 2003 Business Leader Impact 100 list.

Candidate Statement

Aristotle said, “the whole is greater than the sum of its parts.” Certainly, when looking at IEEE, this metaphysics phrase comes to my mind. In IEEE we have engineers and technical professionals developing, standardizing and utilizing technology from diverse perspectives. IEEE members around the world:

  • perform and share research, product development activities, and standard development
  • network and engage with each other and their communities
  • educate current and future technology professionals
  • measure performance and quality
  • formulate ethics choices
  • and many more – these are just a few examples!

We perform these actions across a wide spectrum of in-depth subjects. It is our diversity, yet oneness, that makes me confident we have a positive future ahead. How do we execute on Aristotle’s vision? First, we need to unite on mission goals which span our areas of interest. This way we can bring multiple disciplines and perspectives together to accomplish those big goals. Our strategy will guide our actions in this regard.

Second, we need to streamline our financing of new innovations and systematize the introduction of these programs.

Third, we need to execute and support our best ideas on a continuing basis.

As President, I pledge to:

Institute innovative products and services to ensure our mutually successful future;

Engage stakeholders (members, partners and communities) to unite on a comprehensive vision;

Expand technology advancement and adoption throughout the world;

Execute with excellence, ethics, and financial responsibility.

Finally, I promise to lead by example with enthusiasm and integrity and I humbly ask for your vote.

IEEE Fellow John Verboncoeur

A photo of a man in a grey suit and multicolored tie. Steven Miller

Nominated by the IEEE Board of Directors

Verboncoeur is senior associate dean for research and graduate studies in Michigan State University’s (MSU) engineering college, in East Lansing.

In 2001 he founded the computational engineering science program at the University of California, Berkeley, chairing it until 2010.

In 2015 he cofounded the MSU computational mathematics, science, and engineering department.

His area of interest is plasma physics, with over 500 publications and over 6,800 citations.

He is on the boards of Physics of Plasmas, the American Center for Mobility, and the U.S. Department of Energy Fusion Energy Science Advisory Committee.

Verboncoeur has led startups developing digital exercise and health systems and the consumer credit report. He also had a role in developing the U.S. Postal Service’s mail-forwarding system.

His IEEE experience includes serving as 2023 vice president of Technical Activities, 2020 acting vice president of Publication Services and Products Board, 2019-2020 Division IV director, and 2015—2016 president of the Nuclear and Plasma Sciences Society.

He received a Ph.D. in 1992 in nuclear engineering from UC Berkeley.

Candidate Statement

Ensure IEEE remains THE premier professional technical organization, deliver value via new participants, products and programs, including events, publications, and innovative personalized products and services, to enable our community to change the world. Key strategic programs include:

Climate Change Technologies (CCT): Existential to humanity, addressing mitigation and adaptation must include technology R&D, local relevance for practitioners, university and K-12 students, the general public, media and policymakers and local and global standards.

Smart Agrofood Systems (SmartAg): Smart technologies applied to the food supply chain from soil to consumer to compost.

Artificial Intelligence (AI): Implications from technology to business to ethics. A key methodology for providing personalized IEEE products and services within our existing portfolio, and engaging new audiences such as technology decision makers in academia, government and technology finance by extracting value from our vast data to identify emerging trends.

Organizational growth opportunities include scaling and coordinating our public policy strategy worldwide, building on our credibility to inform and educate. Global communications capability is critical to coordinate and amplify our impact. Lastly, we need to enhance our ability to execute IEEE-wide programs and initiatives, from investment in transformative tools and products to mission-based education, outreach and engagement. This can be accomplished by judicious use of resources generated by business activities through creation of a strategic program to invest in our future with the goal of advancing technology for humanity.

With a passion for the nexus of technology with finance and public policy, I hope to earn your support.

IEEE Fellow S.K. Ramesh

A photo a smiling man in a dark suit and a red tie.  S.K. Ramesh

Nominated by the IEEE Board of Directors

Ramesh is a professor of electrical and computer engineering at California State University Northridge’s college of engineering and computer science, where he served as dean from 2006 to 2017.

An IEEE volunteer for 42 years, he has served on the IEEE Board of Directors, the Publication Services and Products Board, Awards Board, and the Fellows Committee. Leadership positions he has held include vice president of IEEE Educational Activities, president of the IEEE-Eta Kappa Nu honor society, and chair of the IEEE Hearing Board.

As the 2016–2017 vice president of IEEE Educational Activities, he championed several successful programs including the IEEE Learning Network and the IEEE TryEngineering Summer Institute.

Ramesh served as the 2022–2023 president of ABET, the global accrediting organization for academic programs in applied science, computing, engineering, and technology.

He received his bachelor’s degree in electronics and communication engineering from the University of Madras in India. He earned his master’s degree in EE and Ph.D. in molecular science from Southern Illinois University, in Carbondale.

Candidate Statement

We live in an era of rapid technological development where change is constant. My leadership experiences of four decades across IEEE and ABET have taught me some timeless values in this rapidly changing world: To be Inclusive, Collaborative, Accountable, Resilient and Ethical. Connection and community make a difference. IEEE’s mission is especially important, as the pace of change accelerates with advances in AI, Robotics and Biotechnology. I offer leadership that inspires others to believe and enable that belief to become reality. “I CARE”!

My top priority is to serve our members and empower our technical communities worldwide to create and advance technologies to solve our greatest challenges.

If elected, I will focus on three strategic areas:

Member Engagement:

  • Broaden participation of Students, Young Professionals (YPs), and Women in Engineering (WIE).
  • Expand access to affordable continuing education programs through the IEEE Learning Network (ILN).

Volunteer Engagement:

  • Nurture and support IEEE’s volunteer leaders to transform IEEE globally through a volunteer academy program that strengthens collaboration, inclusion, and recognition.
  • Incentivize volunteers to improve cross-regional collaboration, engagement and communications between Chapters and Sections.

Industry Engagement:

  • Transform hybrid/virtual conferences, and open access publications, to make them more relevant to engineers and technologists in industry.
  • Focus on innovation, standards, and sustainable development that address skills needed for jobs of the future.

Our members are the “heart and soul” of IEEE. Let’s work together as one IEEE to attract, retain, and serve our diverse global members. Thank you for your participation and support.

AI and DEI Spotlighted at IEEE’s Futurist Summit



This year’s IEEE Vision, Innovation, and Challenges Summit and Honors Ceremony, held on 2 and 3 May in Boston, celebrated pioneers in engineering who have developed technologies that changed people’s lives, such as the Internet and GPS. The event also included a trip to the headquarters of cloud service provider Akamai Technologies.

Here are highlights of the sessions, which are available on IEEE.tv.

Akamai hosted a panel discussion on 2 May on innovation, moderated by Robert Blumoff, the company’s executive vice president and CTO. The panel featured IEEE Senior Member Simay Akar, IEEE Life Fellow Deepak Divan, and IEEE Fellows Andrea Goldsmith and Tsu-Jae King Liu. Akar is the founder and CEO of AK Energy Consulting, which helps companies meet their sustainability goals. Divan heads Georgia Tech’s Center for Distributed Energy. Goldsmith is Princeton’s dean of engineering and applied sciences, and King Liu is the dean of the University of California, Berkeley’s College of Engineering.

The panelists were asked about what or who inspired them to pursue a career in engineering, as well as their thoughts on continuing education and diversity, equity, and inclusion.

Most said they were inspired to become engineers by a parent. Goldsmith, the recipient of this year’s IEEE James H. Mulligan Jr. Education Medal, credits her father. He was a mechanical engineering professor at UC Berkeley and suggested she consider majoring in engineering because she excelled in math and science in high school.

“When I was young, I didn’t really understand what being an engineer meant,” Goldsmith said at the panel. Because her parents were divorced and she didn’t see her father often, she thought he drove trains. It wasn’t until she was at UC Berkeley, she said, that she realized how technology could change people’s lives for the better. That’s what pushed her to follow in her father’s footsteps.

When asked what keeps them motivated to stay in the engineering field, King Liu said that it’s IEEE’s mission of developing technology for the benefit of humanity. She is this year’s IEEE Founders Medal recipient.

“Diversity is about excellence. The biggest battle is convincing people who don’t believe that diversity has a positive impact on teams and companies.” —Andrea Goldsmith

“Engineering work is done for people and by people,” she said. “I draw inspiration from not only the people we serve, but also the people behind the technology.” The panelists also spoke about the importance of continuing education. “Learning is a lifelong process,” King Liu said. “Engineers need to seek out learning opportunities, whether it’s from having a design fail or from more experienced engineers in their field of interest.”

Diversity, equity, and inclusion was a hot discussion topic. “Diversity is about excellence,” Goldsmith said. “The biggest battle is convincing people who don’t believe that diversity has a positive impact on teams and companies.

“Another issue is finding ways to bring in diverse talent and helping them achieve their full potential,” she added. “One of the things I’m most proud of is the work I’ve done with IEEE on DEI.”

Goldsmith helped launch the IEEE Diversity and Inclusion Committee and is its past chair. Established in 2022 by the IEEE Board of Directors, the committee revised several policies, procedures, and bylaws to ensure that members have a safe and inclusive place for collegial discourse and that all feel welcome. It also launched a website.

group of 3 people standing for a portrait, middle person with a medal around their neck Robert E. Kahn proudly displays his IEEE Medal of Honor at this year’s IEEE Honors Ceremony. He is accompanied by IEEE President-Elect Kathleen Kramer and IEEE President Tom Couglin.Robb Cohen Photography & Video

Career advice and the role of AI in society

The IEEE Vision, Innovation, and Challenges Summit got underway on 3 May at the Encore Boston Harbor. It featured a “fireside chat” with Robert E. Kahn followed by discussions with panels of award recipients on topics such as career advice and concerns related to artificial intelligence.

Kahn was interviewed by Caroline Hyde, a business and technology journalist. Widely known as one of the “fathers of the Internet,” he is this year’s IEEE Medal of Honor recipient for “pioneering technical and leadership contributions in packet communication technologies and foundations of the Internet.”

The IEEE Life Fellow reminisced about his experience collaborating with Vint Cerf on the design of the Transmission Control Protocol and the Internet Protocol. Cerf, an IEEE Life Fellow, is another father of the Internet and the 2023 IEEE Medal of Honor recipient.

While working as a program manager in the U.S. Defense Advanced Research Projects Agency’s information processing techniques office in 1973, Kahn and Cerf designed the Internet’s core architecture.

One audience member asked Kahn how engineers can create opportunities for young people to collaborate like he and Cerf did. Kahn said that it begins with having a problem to solve, and then thinking about it holistically. He also advised students and young professionals to partner with others when such opportunities arise.

The conversation on career advice continued at the Innovation and Collaboration in Leading Technology Laboratories panel. Panelists and IEEE Fellows Eric Evans, Anthony Vetro, and Peter Vetter offered insights on how to be a successful researcher.

It’s important to identify the right problem and develop a technology to solve it, said Evans, director of MIT Lincoln Laboratory.

When asked what qualities are important for job candidates to showcase when interviewing for a position, Vetro said he looks for employees who are willing to collaborate and are self-driven. Vetro is president and CEO of Mitsubishi Electric Research Labs in Cambridge, Mass. He also stressed the importance of learning how to fail.

During the AI and Society: Building a Future with Responsible Innovation session, Juraj Corba, Christopher D. Manning, Renard T. Jenkins, and IEEE Fellow Claire Tomlin discussed how the technology could affect a variety of fields. They agreed the technology is unlikely to replace humans in the workforce.

“People need to think of AI systems as tools—like what Photoshop is to a photographer.”- Renard T. Jenkins

“People need to think of AI systems as tools—like what Photoshop is to a photographer,” said Jenkins, president of consulting firm I2A2 Technologies, Labs and Studios.

“AI doesn’t have learning and adaptability [capabilities] like humans do,” Manning added. The director of Stanford’s Artificial Intelligence Laboratory is this year’s IEEE John von Neumann Medal recipient. “But there is a good role for technology—it can be life-changing for people.” One example he cited was Neuralink’s brain implant, which would enable a person to control a computer “just by thinking,” according to the startup’s founder, Elon Musk.

ChatGPT, a generative AI program, has become a hot topic among educators since its launch two years ago, said panel moderator Armen Pischdotchian, data scientist at IBM in Cambridge, Mass. Tomlin, chair of the electrical engineering and computer science department at UC Berkeley, said AI will make education more interactive and provide a better experience. “It will help both students and educators,” said the recipient of this year’s IEEE Mildred Dresselhaus Medal.

Pioneers of assistive technology, GPS, and the Internet

The highlight of the evening was the Honors Ceremony, which recognized those who had developed technologies such as assistive robots, GPS, and the Internet.

The IEEE Spectrum Technology in the Service of Society Award went to startup Hello Robot, headquartered in Atlanta, for its Stretch robot. The machine gives those with a severe disability, such as paralysis, the ability to maintain their independence while living at home. For example, users can operate the robot to feed themselves, scratch an itch, or cover themselves with a blanket.

The machine consists of a mobile platform with a single arm that moves up and down a retractable pole. A wrist joint at the end of the arm bends back and forth and controls a gripper, which can grasp nearby objects. Sensors mounted at the base of the arm and a camera located at the top of the pole provide the sensing needed to move around from room to room, avoid obstacles, and pick up small items such as books, eating utensils, and pill bottles.

More than six billion people around the world use GPS to navigate their surroundings, according to GPS World. The technology wouldn’t have been possible without Gladys West, who contributed to the mathematical modeling of the shape of the Earth. While working at the Naval Surface Warfare Center, in Dahlgren, Va., she conducted seminal work on satellite geodesy models that was pivotal in the development of the GPS. West, who is 93, retired in 1998 after working at the center for 42 years. For her contributions, she received the IEEE President’s Award.

The ceremony concluded with the presentation of the IEEE Medal of Honor to Bob Kahn, who received a standing ovation.

“This is the honor of my career,” he said. He ended his speech saying that he “hasn’t stopped yet and still has more to do.”

❌
❌